Patents by Inventor Ahmed Omran

Ahmed Omran has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240029911
    Abstract: Topological qubits are provided in a quantum spin liquid. In various embodiments, a device is provided comprising a two-dimensional array of particles, each particle disposed at a vertex of a ruby lattice having a parameter ? greater than 1 2 ; each particle having a first state and an excited state; each particle that belongs to at least three unit cells of the ruby lattice having a blockade radius, when in the excited state, sufficient to blockade each of at least six nearest neighboring particles in the ruby lattice from transitioning from its first state to its excited state, and wherein the array has at least one outer edge configured to be in a first boundary condition.
    Type: Application
    Filed: May 19, 2023
    Publication date: January 25, 2024
    Inventors: Mikhail D. Lukin, Vladan Vuletic, Markus Greiner, Ruben Verresen, Ashvin Vishwanath, Alexander Keesling Contreras, Harry Jay Levine, Giulia Semeghini, Tout Taotao Wang, Ahmed Omran, Dolev Bluvstein, Sepehr Ebadi
  • Publication number: 20230326623
    Abstract: Systems and methods relate to arranging atoms into 1D and/or 2D arrays; exciting the atoms into Rydberg states and evolving the array of atoms, for example, using laser manipulation techniques and high-fidelity laser systems described herein; and observing the resulting final state. In addition, refinements can be made, such as providing high fidelity and coherent control of the assembled array of atoms. Exemplary problems can be solved using the systems and methods for arrangement and control of atoms.
    Type: Application
    Filed: June 5, 2023
    Publication date: October 12, 2023
    Inventors: Alexander Keesling Contreras, Hannes Bernien, Sylvain Schwartz, Harry Jay Levine, Ahmed Omran, Mikhail D. Lukin, Vladan Vuletic, Manuel Endres, Markus Greiner, Hannes Pichler, Leo Zhou, Shengtao Wang, Soonwon Choi, Donggyu Kim, Alexander S. Zibrov
  • Patent number: 11710579
    Abstract: Systems and methods relate to arranging atoms into 1D and/or 2D arrays; exciting the atoms into Rydberg states and evolving the array of atoms, for example, using laser manipulation techniques and high-fidelity laser systems described herein; and observing the resulting final state. In addition, refinements can be made, such as providing high fidelity and coherent control of the assembled array of atoms. Exemplary problems can be solved using the systems and methods for arrangement and control of atoms.
    Type: Grant
    Filed: June 2, 2022
    Date of Patent: July 25, 2023
    Assignees: President and Fellows of Harvard College, California Institute of Technology, Massachusetts Institute of Technology
    Inventors: Alexander Keesling Contreras, Hannes Bernien, Sylvain Schwartz, Harry Jay Levine, Ahmed Omran, Mikhail D. Lukin, Vladan Vuletic, Manuel Endres, Markus Greiner, Hannes Pichler, Leo Zhou, Shengtao Wang, Soonwon Choi, Donggyu Kim, Alexander S. Zibrov
  • Publication number: 20220293293
    Abstract: Systems and methods relate to arranging atoms into 1D and/or 2D arrays; exciting the atoms into Rydberg states and evolving the array of atoms, for example, using laser manipulation techniques and high-fidelity laser systems described herein; and observing the resulting final state. In addition, refinements can be made, such as providing high fidelity and coherent control of the assembled array of atoms. Exemplary problems can be solved using the systems and methods for arrangement and control of atoms.
    Type: Application
    Filed: June 2, 2022
    Publication date: September 15, 2022
    Inventors: Alexander Keesling Contreras, Hannes Bernien, Sylvain Schwartz, Harry Jay Levine, Ahmed Omran, Mikhail D. Lukin, Vladan Vuletic, Manuel Endres, Markus Greiner, Hannes Pichler, Leo Zhou, Shengtao Wang, Soonwon Choi, Donggyu Kim, Alexander S. Zibrov
  • Patent number: 11380455
    Abstract: Systems and methods relate to arranging atoms into 1D and/or 2D arrays; exciting the atoms into Rydberg states and evolving the array of atoms, for example, using laser manipulation techniques and high-fidelity laser systems described herein; and observing the resulting final state. In addition, refinements can be made, such as providing high fidelity and coherent control of the assembled array of atoms. Exemplary problems can be solved using the systems and methods for arrangement and control of atoms.
    Type: Grant
    Filed: July 13, 2018
    Date of Patent: July 5, 2022
    Assignees: President and Fellows of Harvard College, Massachusetts Institute of Technology, California Institute of Technology
    Inventors: Alexander Keesling Contreras, Hannes Bernien, Sylvain Schwartz, Harry Jay Levine, Ahmed Omran, Mikhail D. Lukin, Vladan Vuletic, Manuel Endres, Markus Greiner, Hannes Pichler, Leo Zhou, Shengtao Wang, Soonwon Choi, Donggyu Kim, Alexander S. Zibrov
  • Publication number: 20220197102
    Abstract: A system for optically modulating a plurality of optical channels includes a power delivery module adapted to convert a coherent light beam into a plurality of optical channels, at least one optical modulator, optically coupled to the power delivery module, the at least one optical modulator adapted to optically modulate each of the plurality of the optical channels, and a vacuum chamber having a trapping plane therein, the vacuum chamber adapted to generate an addressable array of trapped particles at the trapping plane, wherein each of the plurality of optical channels is optically coupled to at least one of the trapped particles of the addressable array.
    Type: Application
    Filed: May 15, 2020
    Publication date: June 23, 2022
    Inventors: Ian Robert Christen, Dirk R. Englund, Hannes Bernien, Ahmed Omran, Alexander Keesling Contreras, Harry Jay Levine, Mikhail Lukin
  • Publication number: 20220060668
    Abstract: A method of generating uniform large-scale optical focus arrays (LOT As) with a phase spatial light modulator includes identifying and removing undesired phase rotation in the iterative Fourier transform algorithm (IFTA), thereby producing computer-generated holograms of highly uniform LOT As using a reduced number of iterations as compared to a weighted Gerch-berg-Saxton algorithm. The method also enables a faster compensation of optical system-induced LOT A intensity inhomogeneity than the conventional IFTA.
    Type: Application
    Filed: February 21, 2020
    Publication date: February 24, 2022
    Inventors: Donggyu Kim, Alexander Keesling Contreras, Ahmed Omran, Harry Jay Levine, Hannes Bernien, Mikhail D. Lukin, Dirk R. Englund
  • Publication number: 20200185120
    Abstract: Systems and methods relate to arranging atoms into 1D and/or 2D arrays; exciting the atoms into Rydberg states and evolving the array of atoms, for example, using laser manipulation techniques and high-fidelity laser systems described herein; and observing the resulting final state. In addition, refinements can be made, such as providing high fidelity and coherent control of the assembled array of atoms. Exemplary problems can be solved using the systems and methods for arrangement and control of atoms.
    Type: Application
    Filed: July 13, 2018
    Publication date: June 11, 2020
    Inventors: Alexander Keesling Contreras, Hannes Bernien, Sylvain Schwartz, Harry Jay Levine, Ahmed Omran, Mikhail D. Lukin, Vladan Vuletic, Manuel Endres, Markus Greiner, Hannes Pichler, Leo Zhou, Shengtao Wang, Soonwon Choi, Donggyu Kim, Alexander S. Zibrov
  • Patent number: 10248754
    Abstract: An identification of a first area of an IC design surrounding a failure component is received; and, in response, a smaller portion of the first area is selected. The smaller portion also surrounds the failure component, is smaller than the first area, and contains less circuit components than the first area. The smaller portion is matched to other areas of the IC design to identify potentially undesirable patterns of the IC design that are the same size as the first area. Additionally, the potentially undesirable patterns are grouped into pattern categories, the pattern categories are matched to known good pattern categories, and the known good patterns are removed from the potentially undesirable patterns to leave potential failure patterns. The potential failure patterns of the IC design are then output.
    Type: Grant
    Filed: May 23, 2017
    Date of Patent: April 2, 2019
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Uwe Paul Schroeder, Fadi Batarseh, Karthik Krishnamoorthy, Ahmed Omran
  • Publication number: 20180341739
    Abstract: An identification of a first area of an IC design surrounding a failure component is received; and, in response, a smaller portion of the first area is selected. The smaller portion also surrounds the failure component, is smaller than the first area, and contains less circuit components than the first area. The smaller portion is matched to other areas of the IC design to identify potentially undesirable patterns of the IC design that are the same size as the first area. Additionally, the potentially undesirable patterns are grouped into pattern categories, the pattern categories are matched to known good pattern categories, and the known good patterns are removed from the potentially undesirable patterns to leave potential failure patterns. The potential failure patterns of the IC design are then output.
    Type: Application
    Filed: May 23, 2017
    Publication date: November 29, 2018
    Applicant: GLOBALFOUNDRIES INC.
    Inventors: Uwe Paul Schroeder, Fadi Batarseh, Karthik Krishnamoorthy, Ahmed Omran