Patents by Inventor Aiguo Wang

Aiguo Wang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20070156249
    Abstract: Method of providing a desired material on at least a portion of a surface of a substrate of a component, such as a medical implant component. The method may comprise the steps of arranging the component in a holding fixture which is capable of holding the component at atmospheric or substantially atmospheric pressure, and spraying particles of the desired material at a predetermined high velocity toward the at least one portion of the surface of the substrate so as to enable a layer of the material to be accumulated thereon. The spraying may be performed at atmospheric or substantially atmospheric pressure. The desired material may be a reactive type material, such as titanium or an alloy thereof. The method may enable a high density coating or layer of the material to be provided without the use of a post spray thermal consolidation process.
    Type: Application
    Filed: January 5, 2006
    Publication date: July 5, 2007
    Applicant: Howmedica Osteonics Corp.
    Inventors: Daniel Lawrynowicz, Aiguo Wang, Eric Jones
  • Publication number: 20070150068
    Abstract: An implantable medical device includes a porous metal foam or foam-like structure having pores defined by metal struts or webs wherein the porous structure has directionally controlled pore characteristics. The pore characteristics controlled include one or more of the metal structure porosity, pore size, pore shape, pore size distribution and strut thickness. The pore characteristics may vary in one or more directions throughout the structure. Preferably the pore characteristics are controlled to match the porous metal structure to various mechanical and biological requirements of different regions of the structure in order to optimize aspects of the implants performance and may vary not only over the surface of the porous structure but through the depth of the porous structure. The thickness of the porous metal structure may also be modified to establish a thickness profile that optimizes mechanical and biological requirements of the implants performance.
    Type: Application
    Filed: December 23, 2005
    Publication date: June 28, 2007
    Applicant: Howmedica Osteonics Corp.
    Inventors: Nicholas Dong, Aiguo Wang, Eric Jones, Gregory Plaskon
  • Patent number: 7186362
    Abstract: A prosthetic medical device exhibiting improved wear resistance is fabricated by sealing at least one polyolefinic material in an airtight container and providing an inert atmosphere within the airtight container. The polyolefinic material is exposed to an irradiation source to yield a cross-linked irradiated polyolefinic material. At least one non-irradiated polyolefinic material is blended with the irradiated polyolefinic material, and the prosthetic medical device is formed from the blended material. Selectively cross-linked polymeric compositions may be created by blending a specific amount of cross-linked resins with a specific amount of uncross-linked resins then cured into a polymeric matrix whereby the desired degree or percentage of overall cross-linking is obtained. The polymeric material may then be formed directly into a finished article by injection molding the polymeric material.
    Type: Grant
    Filed: February 25, 2005
    Date of Patent: March 6, 2007
    Assignee: Howmedica Osteonics Corp.
    Inventors: Aiguo Wang, Aaron Essner
  • Publication number: 20050167893
    Abstract: A prosthetic medical device exhibiting improved wear resistance is fabricated by sealing at least one polyolefinic material in an airtight container and providing an inert atmosphere within the airtight container. The polyolefinic material is exposed to an irradiation source to yield a cross-linked irradiated polyolefinic material. At least one non-irradiated polyolefinic material is blended with the irradiated polyolefinic material, and the prosthetic medical device is formed from the blended material. Selectively cross-linked polymeric compositions may be created by blending a specific amount of cross-linked resins with a specific amount of uncross-linked resins then cured into a polymeric matrix whereby the desired degree or percentage of overall cross-linking is obtained. The polymeric material may then be formed directly into a finished article by injection molding the polymeric material.
    Type: Application
    Filed: February 25, 2005
    Publication date: August 4, 2005
    Applicant: Howmedica Osteonics Corp.
    Inventors: Aiguo Wang, Aaron Essner
  • Patent number: 6905511
    Abstract: A prosthetic medical device exhibiting improved wear resistance is fabricated by irradiating at least one polyolefinic material in the presence of an inert atmosphere to yield a cross-linked irradiated polyolefinic material; blending at least one non-irradiated polyolefinic material with the at least one irradiated polyolefinic material, and forming the prosthetic medical device from the blended material. Selectively cross-linked polymeric compositions may be created by blending a specific amount of cross-linked resins with a specific amount of uncross-linked resins then cured into a polymeric matrix whereby the desired degree or percentage of overall cross-linking is obtained. The polymeric material may then be formed directly into a finished article by injection molding the polymeric material.
    Type: Grant
    Filed: March 5, 2003
    Date of Patent: June 14, 2005
    Assignee: Howmedica Oseonics Corp.
    Inventors: Aiguo Wang, Aaron Essner
  • Publication number: 20050113935
    Abstract: An improved prosthetic medical device having improved wear resistance and toughness is provided in the present application. A method is provided to selectively cross-link the polymeric matrix comprising the medical device by employing an interrupting means such as a mask, wire mesh or chopper wheel placed in between the medical device and irradiation source. In addition, the medical device may be translated while being irradiated to further effect the selective cross-linking. The present invention also provides for an injection molding process wherein a prosthetic medical device is formed in a single step, then selectively cross-linked.
    Type: Application
    Filed: August 30, 2004
    Publication date: May 26, 2005
    Applicant: Howmedica Osteonics Corp.
    Inventors: Aiguo Wang, Aaron Essner, Alfred Zarnowski
  • Publication number: 20050043431
    Abstract: A method of producing an improved polyethylene, especially an ultra-high molecular weight polyethylene utilizes a sequential irradiation and annealing process to form a highly cross-linked polyethylene material. The use of sequential irradiation followed by sequential annealing after each irradiation allows each dose of irradiation in the series of doses to be relatively low while achieving a total dose which is sufficiently high to cross-link the material. The process may either be applied to a preformed material such as a rod or bar or sheet made from polyethylene resin or may be applied to a finished polyethylene part. If applied to a finished polyethylene part, the irradiation and annealing must be accomplished with the polyethylene material not in contact with oxygen at a concentration greater than 1% oxygen volume by volume.
    Type: Application
    Filed: October 4, 2004
    Publication date: February 24, 2005
    Applicant: Howmedica Osteonics Corp.
    Inventors: Aiguo Wang, John Dumbleton, Aaron Essner, Shi-Shen Yau
  • Patent number: 6849224
    Abstract: An improved prosthetic medical device having improved wear resistance and toughness is provided in the present application. A method is provided to selectively cross-link the polymeric matrix comprising the medical device by employing an interrupting means such as a mask, wire mesh or chopper wheel placed in between the medical device and irradiation source. In addition, the medical device may be translated while being irradiated to further effect the selective cross-linking. The present invention also provides for an injection molding process wherein a prosthetic medical device is formed in a single step, then selectively cross-linked.
    Type: Grant
    Filed: March 11, 2002
    Date of Patent: February 1, 2005
    Assignee: Howmedica Osteonics Corp.
    Inventors: Aiguo Wang, Aaron Paul Essner, Alfred J. Zarnowski
  • Patent number: 6818171
    Abstract: An improved prosthetic medical device having improved wear resistance and toughness is provided in the present application. A method is provided to selectively cross-link the polymeric matrix comprising the medical device by employing an interrupting means such as a mask, wire mesh or chopper wheel placed in between the medical device and irradiation source. In addition, the medical device may be translated while being irradiated to further effect the selective cross-linking. The present invention also provides for an injection molding process wherein a prosthetic medical device is formed in a single step, then selectively cross-linked.
    Type: Grant
    Filed: March 11, 2002
    Date of Patent: November 16, 2004
    Assignee: Howmedica Osteonics Corp.
    Inventors: Aiguo Wang, Aaron Paul Essner, Alfred J. Zarnowski
  • Publication number: 20030229155
    Abstract: A method of producing an improved polyethylene, especially an ultra-high molecular weight polyethylene utilizes a sequential irradiation and annealing process to form a highly cross-linked polyethylene material. The use of sequential irradiation followed by sequential annealing after each irradiation allows each dose of irradiation in the series of doses to be relatively low while achieving a total dose which is sufficiently high to cross-link the material. The process may either be applied to a preformed material such as a rod or bar or sheet made from polyethylene resin or may be applied to a finished polyethylene part. If applied to a finished polyethylene part, the irradiation and annealing must be accomplished with the polyethylene material not in contact with oxygen at a concentration greater than 1% oxygen volume by volume.
    Type: Application
    Filed: June 4, 2003
    Publication date: December 11, 2003
    Applicant: Howmedica Osteonics Corp.
    Inventors: Aiguo Wang, John H. Dumbleton
  • Publication number: 20030220451
    Abstract: A prosthetic medical device exhibiting improved wear resistance is fabricated by irradiating at least one polyolefinic material in the presence of an inert atmosphere to yield a cross-linked irradiated polyolefinic material; blending at least one non-irradiated polyolefinic material with the at least one irradiated polyolefinic material, and forming the prosthetic medical device from the blended material. Selectively cross-linked polymeric compositions may be created by blending a specific amount of cross-linked resins with a specific amount of uncross-linked resins then cured into a polymeric matrix whereby the desired degree or percentage of overall cross-linking is obtained. The polymeric material may then be formed directly into a finished article by injection molding the polymeric material.
    Type: Application
    Filed: March 5, 2003
    Publication date: November 27, 2003
    Applicant: Howmedica Osteonics Corp.
    Inventors: Aiguo Wang, Aaron Paul Essner
  • Patent number: 6638311
    Abstract: According to the present invention a prosthetic bearing component is formed from a composite synthetic plastics material comprising an injection molded thermoplastic polymeric matrix reinforced by a pitch based carbon fiber and having a bearing surface which has been machined with a surface roughness with a value less than Ra 2 &mgr;m. Such components have shown superior wear qualities. Preferably the bearing surface shape is machined with tolerances of 0.1 to 0.15 mm. The composite material must be capable of withstanding a radiation value of at least 2.8 Mega Rads (MRad). In components in which the bearing surface is substantially or part spherical a sphericity of 0.3 &mgr;m within a solid angle of 45° is required.
    Type: Grant
    Filed: November 5, 2001
    Date of Patent: October 28, 2003
    Assignee: Benoist Girard SAS
    Inventors: Aiguo Wang, Eric Jones, Casper F. Stark, John H. Dumbleton, Ruey Lin
  • Patent number: 6566451
    Abstract: Methods for fabricating prosthetic medical devices exhibiting improved wear resistance include selectively cross-linking polymeric resins then curing and shaping the polymer into a finished article. Selectively cross-linked polymeric compositions may be created by blending a specific amount of cross-linked resins with a specific amount of uncross-linked resins then cured into a polymeric matrix whereby the desired degree or percentage of overall cross-linking is obtained. The polymeric material may then be formed directly into a finished article by injection molding the polymeric material.
    Type: Grant
    Filed: May 1, 2002
    Date of Patent: May 20, 2003
    Assignee: Howmedica Osteonics Corp.
    Inventors: Aiguo Wang, Aaron Essner
  • Publication number: 20020165321
    Abstract: Methods for fabricating prosthetic medical devices exhibiting improved wear resistance include selectively cross-linking polymeric resins then curing and shaping the polymer into a finished article. Selectively cross-linked polymeric compositions may be created by blending a specific amount of cross-linked resins with a specific amount of uncross-linked resins then cured into a polymeric matrix whereby the desired degree or percentage of overall cross-linking is obtained. The polymeric material may then be formed directly into a finished article by injection molding the polymeric material.
    Type: Application
    Filed: May 1, 2002
    Publication date: November 7, 2002
    Applicant: Howmedica Osteonics Corp.
    Inventors: Aiguo Wang, Aaron Paul Essner
  • Patent number: 6436137
    Abstract: Methods and compositions for fabricating prosthetic medical devices exhibiting improved wear resistance include selectively cross-linking polymeric resins then curing and shaping the polymer into a finished article. The selectively cross-linked polymeric compositions may be created by blending a specific amount of cross-linked resins with a specific amount of uncross-linked resins then cured into a polymeric matrix whereby the desired degree or percentage of overall cross-linking is obtained. The polymeric material may then be formed directly into a finished article by injection molding the polymeric material.
    Type: Grant
    Filed: July 19, 2001
    Date of Patent: August 20, 2002
    Assignee: Howmedica Osteonics Corp.
    Inventors: Aiguo Wang, Aaron Essner
  • Publication number: 20020111691
    Abstract: According to the present invention a prosthetic bearing component is formed from a composite synthetic plastics material comprising an injection molded thermoplastic polymeric matrix reinforced by a pitch based carbon fiber and having a bearing surface which has been machined with a surface roughness with a value less than Ra 2 &mgr;m. Such components have shown superior wear qualities. Preferably the bearing surface shape is machined with tolerances of 0.1 to 0.15 mm. The composite material must be capable of withstanding a radiation value of at least 2.8 Mega Rads (MRad). In components in which the bearing surface is substantially or part spherical a sphericity of 0.3 &mgr;m within a solid angle of 45° is required.
    Type: Application
    Filed: November 5, 2001
    Publication date: August 15, 2002
    Inventors: Aiguo Wang, Eric Jones, Casper F. Stark, John H. Dumbelton, Ruey Lin
  • Publication number: 20020100879
    Abstract: An improved prosthetic medical device having improved wear resistance and toughness is provided in the present application. A method is provided to selectively cross-link the polymeric matrix comprising the medical device by employing an interrupting means such as a mask, wire mesh or chopper wheel placed in between the medical device and irradiation source. In addition, the medical device may be translated while being irradiated to further effect the selective cross-linking. The present invention also provides for an injection molding process wherein a prosthetic medical device is formed in a single step, then selectively cross-linked.
    Type: Application
    Filed: March 11, 2002
    Publication date: August 1, 2002
    Inventors: Aiguo Wang, Aaron Paul Essner, Alfred J. Zarnowski
  • Publication number: 20020093124
    Abstract: An improved prosthetic medical device having improved wear resistance and toughness is provided in the present application. A method is provided to selectively cross-link the polymeric matrix comprising the medical device by employing an interrupting means such as a mask, wire mesh or chopper wheel placed in between the medical device and irradiation source. In addition, the medical device may be translated while being irradiated to further effect the selective cross-linking. The present invention also provides for an injection molding process wherein a prosthetic medical device is formed in a single step, then selectively cross-linked.
    Type: Application
    Filed: March 11, 2002
    Publication date: July 18, 2002
    Inventors: Aiguo Wang, Aaron Paul Essner, Alfred J. Zarnowski
  • Patent number: 6414086
    Abstract: Methods and compositions for fabricating prosthetic medical devices exhibiting improved wear resistance include selectively cross-linking polymeric resins then curing and shaping the polymer into a finished article. The selectively cross-linked polymeric compositions may be created by blending a specific amount of cross-linked resins with a specific amount of uncross-linked resins then cured into a polymeric matrix whereby the desired degree or percentage of overall cross-linking is obtained. The polymeric material may then be formed directly into a finished article by injection molding the polymeric material.
    Type: Grant
    Filed: February 29, 2000
    Date of Patent: July 2, 2002
    Assignee: Howmedica Osteonics Corp.
    Inventors: Aiguo Wang, Aaron Essner
  • Publication number: 20020002246
    Abstract: Methods and compositions for fabricating prosthetic medical devices exhibiting improved wear resistance include selectively cross-linking polymeric resins then curing and shaping the polymer into a finished article. The selectively cross-linked polymeric compositions may be created by blending a specific amount of cross-linked resins with a specific amount of uncross-linked resins then cured into a polymeric matrix whereby the desired degree or percentage of overall cross-linking is obtained. The polymeric material may then be formed directly into a finished article by injection molding the polymeric material.
    Type: Application
    Filed: July 19, 2001
    Publication date: January 3, 2002
    Inventors: Aiguo Wang, Aaron Essner