Patents by Inventor Aiko Nakagawa

Aiko Nakagawa has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11612956
    Abstract: A laser light irradiation device includes: a laser light source; a spatial light modulator including a display unit configured to display a phase pattern; an objective lens configured to condense a laser light emitted from the spatial light modulator at the object; an image-transfer optical system configured to transfer an image of the laser light on the display unit to an entrance pupil plane of the objective lens; a reflected light detector configured to detect reflected light of the laser light which is incident in the object and reflected by an opposite surface opposite to a laser light entrance surface; and a controller configured to control the phase pattern. When the reflected light detector detects the reflected light, the controller displays a reflected light aberration correction pattern which is the phase pattern correcting aberration generated in the event of the laser light being transmitted through the object having twice the predetermined thickness.
    Type: Grant
    Filed: March 3, 2017
    Date of Patent: March 28, 2023
    Assignee: HAMAMATSU PHOTONICS K.K.
    Inventors: Yasunori Igasaki, Aiko Nakagawa
  • Patent number: 11471976
    Abstract: A laser machining device includes a laser light source, a spatial light modulator which includes a display unit, an objective lens, an image-transfer optical system, a camera and a controller. The controller executes first display processing and second display processing. According to first display processing, when the camera captures the image, the display unit displays a first phase pattern for adjusting a condensing position of laser light condensed by the objective lens to a first condensing position. According to second display processing, when the camera captures the image, the display unit displays a second phase pattern for adjusting the condensing position of the laser light condensed by the objective lens to a second condensing position different from the first condensing position in an irradiation direction of the laser light.
    Type: Grant
    Filed: March 10, 2017
    Date of Patent: October 18, 2022
    Assignee: HAMAMATSU PHOTONICS K.K.
    Inventors: Yasunori Igasaki, Aiko Nakagawa, Takeshi Yamada
  • Publication number: 20220157411
    Abstract: The present disclosure includes a question creating section 21 configured to create a question for a drinking user to answer; an output section 11 configured to present the user with the question; an input section 11 configured to receive an operation by the user of inputting an answer to the question; and a computation section 22 configured to determine an intoxication degree of the user's on the basis of the answer.
    Type: Application
    Filed: March 17, 2020
    Publication date: May 19, 2022
    Applicant: SUNTORY HOLDINGS LIMITED
    Inventors: Yuichi Suzuki, Mitsuhiro Zeida, Toshinobu Hasegawa, Koichi Endo, Sonoko Kaneda, Motoshige Takagi, Aiko Nakagawa
  • Publication number: 20190126393
    Abstract: A laser light irradiation device includes: a laser light source; a spatial light modulator including a display unit configured to display a phase pattern; an objective lens configured to condense a laser light emitted from the spatial light modulator at the object; an image-transfer optical system configured to transfer an image of the laser light on the display unit to an entrance pupil plane of the objective lens; a reflected light detector configured to detect reflected light of the laser light which is incident in the object and reflected by an opposite surface opposite to a laser light entrance surface; and a controller configured to control the phase pattern. When the reflected light detector detects the reflected light, the controller displays a reflected light aberration correction pattern which is the phase pattern correcting aberration generated in the event of the laser light being transmitted through the object having twice the predetermined thickness.
    Type: Application
    Filed: March 3, 2017
    Publication date: May 2, 2019
    Applicant: HAMAMATSU PHOTONICS K.K.
    Inventors: Yasunori IGASAKI, Aiko NAKAGAWA
  • Publication number: 20190084089
    Abstract: A laser machining device includes a laser light source, a spatial light modulator which includes a display unit, an objective lens, an image-transfer optical system, a camera and a controller. The controller executes first display processing and second display processing. According to first display processing, when the camera captures the image, the display unit displays a first phase pattern for adjusting a condensing position of laser light condensed by the objective lens to a first condensing position. According to second display processing, when the camera captures the image, the display unit displays a second phase pattern for adjusting the condensing position of the laser light condensed by the objective lens to a second condensing position different from the first condensing position in an irradiation direction of the laser light.
    Type: Application
    Filed: March 10, 2017
    Publication date: March 21, 2019
    Applicant: HAMAMATSU PHOTONICS K.K.
    Inventors: Yasunori IGASAKI, Aiko NAKAGAWA, Takeshi YAMADA
  • Patent number: 9029987
    Abstract: While reliably cutting an object to be processed, the strength of the resulting chips is improved. An object to be processed 1 is irradiated with laser light L, so as to form modified regions 17, 27, 37, 47 extending along lines to cut 5 and aligning in the thickness direction in the object 1. Here, modified regions 17 are formed such that modified region formed parts 17a and modified region unformed parts 17b alternate along the lines, and modified regions 47 are formed such that modified region formed parts 47a and modified region unformed parts 47b alternate along the lines. This can inhibit formed modified regions 7 from lowering the strengths on the rear face 21 side and front face 3 side of chips obtained by cutting. On the other hand, modified regions 27, 37 located between the modified regions 17, 47 are formed continuously from one end side of the lines 5 to the other end side thereof, whereby the cuttability of the object 1 can be secured reliably.
    Type: Grant
    Filed: June 16, 2014
    Date of Patent: May 12, 2015
    Assignee: Hamamatsu Photonics K.K.
    Inventors: Aiko Nakagawa, Takeshi Sakamoto
  • Patent number: 8865568
    Abstract: Fractures (17a, 17b) are generated from modified regions (7a, 7b) to front and rear faces (12a, 12b) of a object to be processed (1), respectively, while an unmodified region (2) is interposed between the modified regions (7a, 7b). This can prevent fractures from continuously advancing in the thickness direction of a silicon substrate (12) when forming a plurality of rows of modified regions (7). By generating a stress in the object (1), the fractures (17a, 17b) are connected to each other in the unmodified region (2), so as to cut the object (1). This can prevent fractures from meandering in the rear face (12b) of the object (1) and so forth, whereby the object (1) can be cut accurately along a line to cut the object (5).
    Type: Grant
    Filed: April 18, 2014
    Date of Patent: October 21, 2014
    Assignee: Hamamatsu Photonics K.K
    Inventors: Takeshi Sakamoto, Aiko Nakagawa
  • Publication number: 20140291813
    Abstract: While reliably cutting an object to be processed, the strength of the resulting chips is improved. An object to be processed 1 is irradiated with laser light L, so as to form modified regions 17, 27, 37, 47 extending along lines to cut 5 and aligning in the thickness direction in the object 1. Here, modified regions 17 are formed such that modified region formed parts 17a and modified region unformed parts 17b alternate along the lines, and modified regions 47 are formed such that modified region formed parts 47a and modified region unformed parts 47b alternate along the lines. This can inhibit formed modified regions 7 from lowering the strengths on the rear face 21 side and front face 3 side of chips obtained by cutting. On the other hand, modified regions 27, 37 located between the modified regions 17, 47 are formed continuously from one end side of the lines 5 to the other end side thereof, whereby the cuttability of the object 1 can be secured reliably.
    Type: Application
    Filed: June 16, 2014
    Publication date: October 2, 2014
    Inventors: Aiko Nakagawa, Takeshi Sakamoto
  • Publication number: 20140227860
    Abstract: Fractures (17a, 17b) are generated from modified regions (7a, 7b) to front and rear faces (12a, 12b) of a object to be processed (1), respectively, while an unmodified region (2) is interposed between the modified regions (7a, 7b). This can prevent fractures from continuously advancing in the thickness direction of a silicon substrate (12) when forming a plurality of rows of modified regions (7). By generating a stress in the object (1), the fractures (17a, 17b) are connected to each other in the unmodified region (2), so as to cut the object (1). This can prevent fractures from meandering in the rear face (12b) of the object (1) and so forth, whereby the object (1) can be cut accurately along a line to cut the object (5).
    Type: Application
    Filed: April 18, 2014
    Publication date: August 14, 2014
    Applicant: HAMAMATSU PHOTONICS K.K.
    Inventors: Takeshi SAKAMOTO, Aiko NAKAGAWA
  • Patent number: 8790997
    Abstract: While reliably cutting an object to be processed, the strength of the resulting chips is improved. An object to be processed 1 is irradiated with laser light L, so as to form modified regions 17, 27, 37, 47 extending along lines to cut 5 and aligning in the thickness direction in the object 1. Here, modified regions 17 are formed such that modified region formed parts 17a and modified region unformed parts 17b alternate along the lines, and modified regions 47 are formed such that modified region formed parts 47a and modified region unformed parts 47b alternate along the lines. This can inhibit formed modified regions 7 from lowering the strengths on the rear face 21 side and front face 3 side of chips obtained by cutting. On the other hand, modified regions 27, 37 located between the modified regions 17, 47 are formed continuously from one end side of the lines 5 to the other end side thereof, whereby the cuttability of the object 1 can be secured reliably.
    Type: Grant
    Filed: August 17, 2010
    Date of Patent: July 29, 2014
    Assignee: Hamamatsu Photonics K.K.
    Inventors: Aiko Nakagawa, Takeshi Sakamoto
  • Patent number: 8728914
    Abstract: Fractures (17a, 17b) are generated from modified regions (7a, 7b) to front and rear faces (12a, 12b) of a object to be processed (1), respectively, while an unmodified region (2) is interposed between the modified regions (7a, 7b). This can prevent fractures from continuously advancing in the thickness direction of a silicon substrate (12) when forming a plurality of rows of modified regions (7). By generating a stress in the object (1), the fractures (17a, 17b) are connected to each other in the unmodified region (2), so as to cut the object (1). This can prevent fractures from meandering in the rear face (12b) of the object (1) and so forth, whereby the object (1) can be cut accurately along a line to cut the object (5).
    Type: Grant
    Filed: January 27, 2010
    Date of Patent: May 20, 2014
    Assignee: Hamamatsu Photonics K.K.
    Inventors: Takeshi Sakamoto, Aiko Nakagawa
  • Publication number: 20120119334
    Abstract: While reliably cutting an object to be processed, the strength of the resulting chips is improved. An object to be processed 1 is irradiated with laser light L, so as to form modified regions 17, 27, 37, 47 extending along lines to cut 5 and aligning in the thickness direction in the object 1. Here, modified regions 17 are formed such that modified region formed parts 17a and modified region unformed parts 17b alternate along the lines, and modified regions 47 are formed such that modified region formed parts 47a and modified region unformed parts 47b alternate along the lines. This can inhibit formed modified regions 7 from lowering the strengths on the rear face 21 side and front face 3 side of chips obtained by cutting. On the other hand, modified regions 27, 37 located between the modified regions 17, 47 are formed continuously from one end side of the lines 5 to the other end side thereof, whereby the cuttability of the object 1 can be secured reliably.
    Type: Application
    Filed: August 17, 2010
    Publication date: May 17, 2012
    Applicant: HAMAMATSU PHOTONICS K.K.
    Inventors: Aiko Nakagawa, Takeshi Sakamoto
  • Publication number: 20110300691
    Abstract: Fractures (17a, 17b) are generated from modified regions (7a, 7b) to front and rear faces (12a, 12b) of a object to be processed (1), respectively, while an unmodified region (2) is interposed between the modified regions (7a, 7b). This can prevent fractures from continuously advancing in the thickness direction of a silicon substrate (12) when forming a plurality of rows of modified regions (7). By generating a stress in the object (1), the fractures (17a, 17b) are connected to each other in the unmodified region (2), so as to cut the object (1). This can prevent fractures from meandering in the rear face (12b) of the object (1) and so forth, whereby the object (1) can be cut accurately along a line to cut the object (5).
    Type: Application
    Filed: January 27, 2010
    Publication date: December 8, 2011
    Applicant: HAMAMATSU PHOTONICS K.K.
    Inventors: Takeshi Sakamoto, Aiko Nakagawa