Patents by Inventor Ailan Guo

Ailan Guo has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190049449
    Abstract: Novel gene deletions and translocations involving chromosome 2 resulting in fusion proteins combining part of Anaplastic Lymphoma Kinase (ALK) kinase with part of a secondary protein have now been identified in human solid tumors, e.g. non-small cell lung carcinoma (NSCLC). Secondary proteins include Echinoderm Microtubule-Associated Protein-Like 4 (EML-4) and TRK-Fusion Gene (TFG). The EML4-ALK fusion protein, which retains ALK tyrosine kinase activity, was confirmed to drive the proliferation and survival of NSCLC characterized by this mutation. The invention therefore provides, in part, isolated polynucleotides and vectors encoding the disclosed mutant polypeptides, probes for detecting it, isolated mutant polypeptides, and reagents for detecting the fusion and truncated polypeptides.
    Type: Application
    Filed: February 16, 2018
    Publication date: February 14, 2019
    Applicant: CELL SIGNALING TECHNOLOGY, INC.
    Inventors: Klarisa Rikova, Herbert Haack, Laura Sullivan, Ailan Guo, Anthony Possemato, Joan MacNeill, Ting-Lei Gu, Jian Yu
  • Publication number: 20180156802
    Abstract: Novel gene deletions and translocations involving chromosome 2 resulting in fusion proteins combining part of Anaplastic Lymphoma Kinase (ALK) kinase with part of a secondary protein have now been identified in human solid tumors, e.g. non-small cell lung carcinoma (NSCLC). Secondary proteins include Echinoderm Microtubule-Associated Protein-Like 4 (EML-4) and TRK-Fusion Gene (TFG). The EML4-ALK fusion protein, which retains ALK tyrosine kinase activity, was confirmed to drive the proliferation and survival of NSCLC characterized by this mutation. The invention therefore provides, in part, isolated polynucleotides and vectors encoding the disclosed mutant polypeptides, probes for detecting it, isolated mutant polypeptides, and reagents for detecting the fusion and truncated polypeptides.
    Type: Application
    Filed: July 5, 2017
    Publication date: June 7, 2018
    Applicant: CELL SIGNALING TECHNOLOGY, INC.
    Inventors: Klarisa Rikova, Herbert Haack, Laura Sullivan, Ailan Guo, Anthony Possemato, Joan MacNeill, Ting-Lei Gu, Jian Yu
  • Patent number: 9988688
    Abstract: Novel gene deletions and translocations involving chromosome 2 resulting in fusion proteins combining part of Anaplastic Lymphoma Kinase (ALK) kinase with part of a secondary protein have been identified herein in human solid tumors, e.g. non-small cell lung carcinoma (NSCLC). Secondary proteins include Echinoderm Microtubule-Associated Protein-Like 4 (EML-4) and TRK-Fusion Gene (TFG). The EML4-ALK fusion protein, which retains ALK tyrosine kinase activity, was confirmed to drive the proliferation and survival of NSCLC characterized by this mutation. The invention therefore provides, in part, isolated polynucleotides and vectors encoding the disclosed mutant ALK kinase polypeptides, probes for detecting it, isolated mutant polypeptides, recombinant polypeptides, and reagents for detecting the fusion and truncated polypeptides.
    Type: Grant
    Filed: September 30, 2015
    Date of Patent: June 5, 2018
    Assignee: Cell Signaling Technology, Inc.
    Inventors: Klarisa Rikova, Herbert Haack, Laura Sullivan, Ailan Guo, Anthony Possemato, Joan MacNeill, Ting-Lei Gu, Jian Yu
  • Patent number: 9856315
    Abstract: The disclosure features over 5000 methylation and acetylation sites identified in human cell line, human serum and mouse tissues, peptides (including AQUA peptides) comprising a methylation or acetylation site of the disclosure, antibodies specifically bind to a methylation or acetylation site of the disclosure, and diagnostic and therapeutic uses of the above.
    Type: Grant
    Filed: October 15, 2015
    Date of Patent: January 2, 2018
    Assignee: Cell Signaling Technology, Inc.
    Inventors: Hongbo Gu, Ailan Guo, Daniel Mulhern, Jeffrey C. Silva, Jing Zhou
  • Patent number: 9523130
    Abstract: Novel gene deletions and translocations involving chromosome 2 resulting in fusion proteins combining part of Anaplastic Lymphoma Kinase (ALK) kinase with part of a secondary protein have been identified herein in human solid tumors, e.g. non-small cell lung carcinoma (NSCLC). Secondary proteins include Echinoderm Microtubule-Associated Protein-Like 4 (EML-4) and TRK-Fusion Gene (TFG). The EML4-ALK fusion protein, which retains ALK tyrosine kinase activity, was confirmed to drive the proliferation and survival of NSCLC characterized by this mutation. The invention therefore provides, in part, isolated polynucleotides and vectors encoding the disclosed mutant ALK kinase polypeptides, probes for detecting it, isolated mutant polypeptides, recombinant polypeptides, and reagents for detecting the fusion and truncated polypeptides.
    Type: Grant
    Filed: August 2, 2016
    Date of Patent: December 20, 2016
    Assignee: CELL SIGNALING TECHNOLOGY, INC.
    Inventors: Klarisa Rikova, Herbert Haack, Laura Sullivan, Ailan Guo, Anthony Possemato, Joan MacNeill, Ting-Lei Gu, Jian Yu
  • Publication number: 20160333425
    Abstract: Novel gene deletions and translocations involving chromosome 2 resulting in fusion proteins combining part of Anaplastic Lymphoma Kinase (ALK) kinase with part of a secondary protein have been identified herein in human solid tumors, e.g. non-small cell lung carcinoma (NSCLC). Secondary proteins include Echinoderm Microtubule-Associated Protein-Like 4 (EML-4) and TRK-Fusion Gene (TFG). The EML4-ALK fusion protein, which retains ALK tyrosine kinase activity, was confirmed to drive the proliferation and survival of NSCLC characterized by this mutation. The invention therefore provides, in part, isolated polynucleotides and vectors encoding the disclosed mutant ALK kinase polypeptides, probes for detecting it, isolated mutant polypeptides, recombinant polypeptides, and reagents for detecting the fusion and truncated polypeptides.
    Type: Application
    Filed: August 2, 2016
    Publication date: November 17, 2016
    Applicant: Cell Signaling Technology, Inc.
    Inventors: Klarisa Rikova, Herbert Haack, Laura Sullivan, Ailan Guo, Anthony Possemato, Joan MacNeill, Ting-Lei Gu, Jian Yu
  • Publication number: 20160319001
    Abstract: There is provided a motif-specific, context-independent antibody that specifically binds a recurring, modified motif consisting of (i) at least one sumoylated lysine residue, and (ii) one or more degenerate amino acids bound by a peptide bond to said sumoylated lysine residue, said antibody specifically binding said motif in a plurality of non-homologous peptides or proteins within an organism in which it recurs. Also provided is a motif-specific, context-independent antibody that specifically binds a recurring, modified motif consisting of (i) a C-terminal aspartic acid residue, and (ii) one or more degenerate amino acids bound by a peptide bond to said C-terminal aspartic acid residue, said antibody specifically binding said motif in a plurality of non-homologous peptides or proteins within an organism in which it recurs.
    Type: Application
    Filed: February 1, 2016
    Publication date: November 3, 2016
    Inventors: Michael Comb, Ailan Guo, John Edward Rush, II, Jun-Ming Cai, Jing Li, Jing Zhou
  • Publication number: 20160215353
    Abstract: In accordance with the invention, a novel gene translocation, (5q32, 6q22), in human non-small cell lung carcinoma (NSCLC) that results in a fusion proteins combining part of CD74 with Proto-oncogene Tyrosine Protein Kinase ROS Precursor (ROS) kinase has now been identified. The CD74-ROS fusion protein is anticipated to drive the proliferation and survival of a subgroup of NSCLC tumors. The invention therefore provides, in part, isolated polynucleotides and vectors encoding the disclosed mutant ROS kinase polypeptides, probes for detecting it, isolated mutant polypeptides, recombinant polypeptides, and reagents for detecting the fusion and truncated polypeptides.
    Type: Application
    Filed: April 12, 2016
    Publication date: July 28, 2016
    Applicant: Cell Signaling Technology, Inc.
    Inventors: Ting-Lei Gu, Ailan Guo
  • Publication number: 20160193208
    Abstract: The invention discloses a previously unidentified subset of mammalian non-small cell lung carcinomas (NSCLC) in which platelet-derived growth factor receptor alpha (PDGFR?) is expressed and is driving the disease, and provides methods for identifying a mammalian NSCLC tumor that belongs to a subset of NSCLC tumors in which PDGFR? is expressed, and for identifying a NSCLC tumor that is likely to respond to a PDGFR?-inhibiting therapeutic. The invention also provides methods for inhibiting the progression of a mammalian NSCLC tumor in which PDGFR? is expressed, and for determining whether a compound inhibits the progression of a PDGFR?-expressing mammalian NSCLC tumor.
    Type: Application
    Filed: September 8, 2015
    Publication date: July 7, 2016
    Inventors: Klarisa Rikova, Roberto Polakiewicz, Ailan Guo, Katherine Eleanor Crosby, Quingfu Zeng, Kimberly A Lee
  • Publication number: 20160186268
    Abstract: Novel gene deletions and translocations involving chromosome 2 resulting in fusion proteins combining part of Anaplastic Lymphoma Kinase (ALK) kinase with part of a secondary protein have been identified herein in human solid tumors, e.g. non-small cell lung carcinoma (NSCLC). Secondary proteins include Echinoderm Microtubule-Associated Protein-Like 4 (EML-4) and TRK-Fusion Gene (TFG). The EML4-ALK fusion protein, which retains ALK tyrosine kinase activity, was confirmed to drive the proliferation and survival of NSCLC characterized by this mutation. The invention therefore provides, in part, isolated polynucleotides and vectors encoding the disclosed mutant ALK kinase polypeptides, probes for detecting it, isolated mutant polypeptides, recombinant polypeptides, and reagents for detecting the fusion and truncated polypeptides.
    Type: Application
    Filed: September 30, 2015
    Publication date: June 30, 2016
    Applicant: CELL SIGNALING TECHNOLOGY, INC.
    Inventors: Klarisa Rikova, Herbert Haack, Laura Sullivan, Ailan Guo, Anthony Possemato, Joan MacNeill, Ting-Lei Gu, Jian Yu
  • Publication number: 20160137725
    Abstract: The disclosure features over 5000 methylation and acetylation sites identified in human cell line, human serum and mouse tissues, peptides (including AQUA peptides) comprising a methylation or acetylation site of the disclosure, antibodies specifically bind to a methylation or acetylation site of the disclosure, and diagnostic and therapeutic uses of the above.
    Type: Application
    Filed: October 15, 2015
    Publication date: May 19, 2016
    Inventors: Hongbo Gu, Ailan Guo, Daniel Mulhern, Jeffrey C. Silva, Jing Zhou
  • Patent number: 9328349
    Abstract: In accordance with the invention, a novel gene translocation, (5q32, 6q22), in human non-small cell lung carcinoma (NSCLC) that results in a fusion proteins combining part of CD74 with Proto-oncogene Tyrosine Protein Kinase ROS Precursor (ROS) kinase has now been identified. The CD74-ROS fusion protein is anticipated to drive the proliferation and survival of a subgroup of NSCLC tumors. The invention therefore provides, in part, isolated polynucleotides and vectors encoding the disclosed mutant ROS kinase polypeptides, probes for detecting it, isolated mutant polypeptides, recombinant polypeptides, and reagents for detecting the fusion and truncated polypeptides.
    Type: Grant
    Filed: September 11, 2014
    Date of Patent: May 3, 2016
    Assignee: Cell Signaling Technology, Inc.
    Inventors: Ting-Lei Gu, Ailan Guo
  • Patent number: 9249231
    Abstract: There is provided a motif-specific, context-independent antibody that specifically binds a recurring, modified motif consisting of (i) at least one sumoylated lysine residue, and (ii) one or more degenerate amino acids bound by a peptide bond to said sumoylated lysine residue, said antibody specifically binding said motif in a plurality of non-homologous peptides or proteins within an organism in which it recurs. Also provided is a motif-specific, context-independent antibody that specifically binds a recurring, modified motif consisting of (i) a C-terminal aspartic acid residue, and (ii) one or more degenerate amino acids bound by a peptide bond to said C-terminal aspartic acid residue, said antibody specifically binding said motif in a plurality of non-homologous peptides or proteins within an organism in which it recurs.
    Type: Grant
    Filed: November 4, 2011
    Date of Patent: February 2, 2016
    Assignee: Cell Signaling Technology, Inc.
    Inventors: Michael Comb, Ailan Guo, John Edward Rush, II, Jun-Ming Cai, Jing Li, Jing Zhou
  • Patent number: 9181326
    Abstract: The invention relates to antibody reagents that specifically bind to peptides carrying a ubiquitin remnant from a digested or chemically treated biological sample. The reagents allow the technician to identify ubiquitinated polypeptides as well as the sites of ubiquitination on them. The reagents are preferably employed in proteomic analysis using mass spectrometry. The antibody reagents specifically bind to the remnant of ubiquitin (i.e., a diglycine modified epsilon amine of lysine) left on a peptide which as been generated by digesting or chemically treating ubiquitinated proteins. The inventive antibody reagents' affinity to the ubiquitin remnant does not depend on the remaining amino acid sequences flanking the modified (i.e., ubiquitinated) lysine, i.e., they are context independent.
    Type: Grant
    Filed: April 4, 2013
    Date of Patent: November 10, 2015
    Assignee: Cell Signaling Technology, Inc.
    Inventors: John Edward Rush, II, Jing Li, Ailan Guo
  • Publication number: 20150232540
    Abstract: The disclosure relates to antibody reagents that specifically bind to peptides carrying a ubiquitin remnant from a digested or chemically treated biological sample. The reagents allow the technician to identify ubiquitinated polypeptides as well as the sites of ubiquitination on them. The reagents are preferably employed in proteomic analysis using mass spectrometry. The antibody reagents specifically bind to the remnant of ubiquitin (i.e., a diglycine modified epsilon amine of lysine) left on a peptide which as been generated by digesting or chemically treating ubiquitinated proteins. The inventive antibody reagents' affinity to the ubiquitin remnant does not depend on the remaining amino acid sequences flanking the modified (i.e., ubiquitinated) lysine, i.e., they are context independent.
    Type: Application
    Filed: December 16, 2014
    Publication date: August 20, 2015
    Inventors: Michael Comb, John Edward Rush, II, Jing Li, Ailan Guo
  • Patent number: 9102713
    Abstract: The invention relates to antibody reagents that specifically bind to peptides carrying a ubiquitin remnant from a digested or chemically treated biological sample. The reagents allow the technician to identify ubiquitinated polypeptides as well as the sites of ubiquitination on them. The reagents are preferably employed in proteomic analysis using mass spectrometry. The antibody reagents specifically bind to the remnant of ubiquitin (i.e., a diglycine modified epsilon amine of lysine) left on a peptide which as been generated by digesting or chemically treating ubiquitinated proteins. The inventive antibody reagents' affinity to the ubiquitin remnant does not depend on the remaining amino acid sequences flanking the modified (i.e., ubiquitinated) lysine, i.e., they are context independent.
    Type: Grant
    Filed: April 4, 2013
    Date of Patent: August 11, 2015
    Assignee: Cell Signaling Technology, Inc.
    Inventors: John Edward Rush, II, Jing Li, Ailan Guo
  • Patent number: 9096855
    Abstract: In accordance with the invention, a novel gene translocation, (5q32, 6q22), in human non-small cell lung carcinoma (NSCLC) that results in a fusion proteins combining part of CD74 with Proto-oncogene Tyrosine Protein Kinase ROS Precursor (ROS) kinase has now been identified. The CD74-ROS fusion protein is anticipated to drive the proliferation and survival of a subgroup of NSCLC tumors. The invention therefore provides, in part, isolated polynucleotides and vectors encoding the disclosed mutant ROS kinase polypeptides, probes for detecting it, isolated mutant polypeptides, recombinant polypeptides, and reagents for detecting the fusion and truncated polypeptides.
    Type: Grant
    Filed: October 20, 2008
    Date of Patent: August 4, 2015
    Assignee: CELL SIGNALING TECHNOLOGY, INC.
    Inventors: Ting-Lei Gu, Ailan Guo
  • Publication number: 20150184158
    Abstract: In accordance with the invention, a novel gene translocation, (4p15, 6q22), in human non-small cell lung carcinoma (NSCLC) that results in a fusion proteins combining part of Sodium-dependent Phosphate Transporter Isoform NaPi-3b protein (SLC34A2) with Proto-oncogene Tyrosine Protein Kinase ROS Precursor (ROS) kinase has now been identified. The SLC34A2-ROS fusion protein is anticipated to drive the proliferation and survival of a subgroup of NSCLC tumors. The invention therefore provides, in part, isolated polynucleotides and vectors encoding the disclosed mutant ROS kinase polypeptides, probes for detecting it, isolated mutant polypeptides, recombinant polypeptides, and reagents for detecting the fusion and truncated polypeptides.
    Type: Application
    Filed: September 11, 2014
    Publication date: July 2, 2015
    Applicant: CELL SIGNALING TECHNOLOGY, INC.
    Inventors: Ailan Guo, Anthony Possemato
  • Publication number: 20140134640
    Abstract: Novel gene deletions and translocations involving chromosome 2 resulting in fusion proteins combining part of Anaplastic Lymphoma Kinase (ALK) kinase with part of a secondary protein have now been identified in human solid tumors, e.g. non-small cell lung carcinoma (NSCLC). Secondary proteins include Echinoderm Microtubule-Associated Protein-Like 4 (EML-4) and TRK-Fusion Gene (TFG). The EML4-ALK fusion protein, which retains ALK tyrosine kinase activity, was confirmed to drive the proliferation and survival of NSCLC characterized by this mutation. The invention therefore provides, in part, isolated polynucleotides and vectors encoding the disclosed mutant polypeptides, probes for detecting it, isolated mutant polypeptides, and reagents for detecting the fusion and truncated polypeptides.
    Type: Application
    Filed: July 12, 2013
    Publication date: May 15, 2014
    Applicant: Cell Signaling Technology, Inc.
    Inventors: Klarisa Rikova, Herbert Haack, Laura Sullivan, Ailan Guo, Anthony Possemato, Joan MacNeill, Ting-Lei Gu, Jian Yu
  • Publication number: 20130266965
    Abstract: The invention discloses a previously unidentified subset of mammalian non-small cell lung carcinomas (NSCLC) in which platelet-derived growth factor receptor alpha (PDGFR?) is expressed and is driving the disease, and provides methods for identifying a mammalian NSCLC tumor that belongs to a subset of NSCLC tumors in which PDGFR? is expressed, and for identifying a NSCLC tumor that is likely to respond to a PDGFR?-inhibiting therapeutic. The invention also provides methods for inhibiting the progression of a mammalian NSCLC tumor in which PDGFR? is expressed, and for determining whether a compound inhibits the progression of a PDGFR?-expressing mammalian NSCLC tumor.
    Type: Application
    Filed: February 28, 2013
    Publication date: October 10, 2013
    Applicant: CELL SIGNALING TECHNOLOGY, INC.
    Inventors: Klarisa Rikova, Roberto Polakiewicz, Ailan Guo, Katherine Eleanor Crosby, Quingfu Zeng, Kimberly A. Lee