Patents by Inventor Ailene Gardner Phillips

Ailene Gardner Phillips has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10208005
    Abstract: Disclosed herein are methods of using scaled selectivities to assist in determining whether changes to the value of a target ethylene oxide production parameter—such as ethylene oxide production rate—used in the process of epoxidizing ethylene with a high-selectivity catalyst, have caused the process to move away from optimal operation. If the deviation from optimal operation has not worsened, it is generally unnecessary to perform a full optimization study even if the value of a target ethylene oxide production parameter has changed, which reduces or eliminates process disturbances caused by carrying out such studies. Methods are also disclosed which use both scaled selectivities and scaled reaction temperatures.
    Type: Grant
    Filed: September 30, 2015
    Date of Patent: February 19, 2019
    Assignee: Dow Technology Investments LLC
    Inventor: Ailene Gardner Phillips
  • Publication number: 20170362193
    Abstract: Disclosed herein are methods of using scaled selectivities to assist in determining whether changes to the value of a target ethylene oxide production parameter—such as ethylene oxide production rate—used in the process of epoxidizing ethylene with a high-selectivity catalyst, have caused the process to move away from optimal operation. If the deviation from optimal operation has not worsened, it is generally unnecessary to perform a full optimization study even if the value of a target ethylene oxide production parameter has changed, which reduces or eliminates process disturbances caused by carrying out such studies. Methods are also disclosed which use both scaled selectivities and scaled reaction temperatures.
    Type: Application
    Filed: September 30, 2015
    Publication date: December 21, 2017
    Inventor: Ailene Gardner PHILLIPS
  • Patent number: 9181207
    Abstract: Methods of reducing or maintaining the value of an alkylene oxide production parameter (such as alkylene oxide production rate) in a process of making an alkylene oxide by reacting an alkylene and oxygen over a high efficiency catalyst are shown and described. One method comprises reducing the concentration of oxygen in the reactor feed gas to reduce or maintain the value of the alkylene oxide production parameter.
    Type: Grant
    Filed: December 6, 2012
    Date of Patent: November 10, 2015
    Assignee: Dow Technology Investments LLC
    Inventors: Liping Zhang, Sasanka Raha, Biju M. Devassy, Balu S. Uphade, Arun G. Basrur, Ailene Gardner Phillips, Ravindra Tupe
  • Publication number: 20140316150
    Abstract: Methods of reducing or maintaining the value of an alkylene oxide production parameter (such as alkylene oxide production rate) in a process of making an alkylene oxide by reacting an alkylene and oxygen over a high efficiency catalyst are shown and described. One method comprises reducing the concentration of oxygen in the reactor feed gas to reduce or maintain the value of the alkylene oxide production parameter.
    Type: Application
    Filed: December 6, 2012
    Publication date: October 23, 2014
    Applicant: Dow Technology Investments LLC
    Inventors: Liping Zhang, Sasanka Raha, Biju M. Devassy, Balu S. Uphade, Arun G. Basrur, Ailene Gardner Phillips, Ravindra Tupe
  • Patent number: 8815769
    Abstract: A process for conditioning a high efficiency silver catalyst used to manufacture ethylene oxide from ethylene, oxygen, and at least one organic chloride is described. A non-reactive conditioning gas comprising at least one of ethylene, oxygen, and a ballast gas is introduced to the catalyst at a conditioning temperature ranging from 150° C. to 180° C. for a selected period of at least 4 hours.
    Type: Grant
    Filed: April 3, 2012
    Date of Patent: August 26, 2014
    Assignee: Dow Technology Investments LLC
    Inventors: Liping Zhang, Ravindra Radhakisan Tupe, Ailene Gardner Phillips, Paul Victor Hinman, Hwaili Soo
  • Publication number: 20140012022
    Abstract: A process for conditioning a high efficiency silver catalyst used to manufacture ethylene oxide from ethylene, oxygen, and at least one organic chloride is described. A non-reactive conditioning gas comprising at least one of ethylene, oxygen, and a ballast gas is introduced to the catalyst at a conditioning temperature ranging from 150° C. to 180° C. for a selected period of at least 4 hours.
    Type: Application
    Filed: April 3, 2012
    Publication date: January 9, 2014
    Applicant: Dow Technology Investments LLC
    Inventors: Liping Zhang, Ravindra Radhakisan Tupe, Ailene Gardner Phillips, Paul Victor Hinman, Hwaili Soo
  • Publication number: 20020007096
    Abstract: This invention relates to processes for producing substituted or unsubstituted alkenols. The process subjects an alkadiene to reductive hydroformylation to selectively produce at least one substituted or unsubstituted alkenols. The process is particularly useful in producing pentenols from butadiene. This invention also relates in part to reaction mixtures containing one or more substituted or unsubstituted alkenols as principal reaction products.
    Type: Application
    Filed: April 15, 1997
    Publication date: January 17, 2002
    Inventors: DIANE LEE PACKETT, JOHN ROBERT BRIGGS, DAVID ROBERT BRYANT, AILENE GARDNER PHILLIPS, DAVID JAMES SCHRECK, ANIL SAKHARAM GURAM, KURT DAMAR OLSON, THOMAS CARL EISENSCHMID
  • Patent number: 6310260
    Abstract: This invention relates to a process for separating one or more organophosphorus ligand degradation products, one or more reaction byproducts and one or more products from a continuously generated reaction product fluid comprising one or more unreacted reactants, a metal-organophosphorus ligand complex catalyst, optionally free organophosphorus ligand, said one or more organophosphorus ligand degradation products, said one or more reaction byproducts, said one or more products, one or more polar solvents and one or more nonpolar solvents by phase separation wherein (i) the selectivity of the polar phase for the organophosphorus ligand with respect to the one or more products is expressed by a partition coefficient ratio Ef1 which is a value greater than about 2.5, (ii) the selectivity of the polar phase for the organophosphorus ligand with respect to the one or more organophosphorus ligand degradation products is expressed by a partition coefficient ratio Ef2 which is a value greater than about 2.
    Type: Grant
    Filed: March 15, 2000
    Date of Patent: October 30, 2001
    Assignee: Union Carbide Chemicals & Plastics Technology Corporation
    Inventors: John Nicholas Argyropoulos, Jeffrey Scott Kanel, Michael Leo Tulchinsky, David James Miller, Donald Lee Morrison, Paul Foley, David Robert Bryant, Ailene Gardner Phillips, Brian Michael Roesch, John Robert Briggs, Max Min Lee, John Michael Maher
  • Patent number: 6307110
    Abstract: This invention relates to a process for separating one or more organophosphorus ligand degradation products, one or more reaction byproducts and one or more products from a continuously generated reaction product fluid comprising one or more unreacted reactants, a metal-organophosphorus ligand complex catalyst, optionally free organophosphorus ligand, said one or more organophosphorus ligand degradation products, said one or more reaction byproducts, said one or more products, one or more nonpolar solvents and one or more polar solvents by phase separation wherein (i) the selectivity of the nonpolar phase for the organophosphorus ligand with respect to the one or more products is expressed by a partition coefficient ratio Ef1which is a value greater than about 2.5, (ii) the selectivity of the nonpolar phase for the organophosphorus ligand with respect to the one or more organophosphorus ligand degradation products is expressed by a partition coefficient ratio Ef2 which is a value greater than about 2.
    Type: Grant
    Filed: March 15, 2000
    Date of Patent: October 23, 2001
    Assignee: Union Carbide Chemicals & Plastics Technology Corporation
    Inventors: John Nicholas Argyropoulos, Jeffrey Scott Kanel, Michael Leo Tulchinsky, David James Miller, Donald Lee Morrison, Paul Foley, David Robert Bryant, Ailene Gardner Phillips, Brian Michael Roesch, John Robert Briggs, Max Min Lee, John Michael Maher
  • Patent number: 6307109
    Abstract: This invention relates to a process for separating one or more products from a reaction product fluid comprising a metal-organophosphorus ligand complex catalyst, optionally free organophosphorus ligand, said one or more products, one or more nonpolar reaction solvents and one or more polar reaction solvents, in which said reaction product fluid exhibits phase behavior depicted by FIG. 1, wherein said process comprises (1) supplying said reaction product fluid from a reaction zone to a separation zone, (2) controlling concentration of said one or more nonpolar reaction solvents and said one or more polar reaction solvents, temperature and pressure in said separation zone sufficient to obtain by phase separation two immiscible liquid phases depicted by regions 2, 4 and 6 of FIG. 1 comprising a polar phase and a nonpolar phase and to prevent or minimize formation of three immiscible liquid phases depicted by region 5 of FIG. 1 and one homogeneous liquid phase depicted by regions 1, 3 and 7 of FIG.
    Type: Grant
    Filed: March 15, 2000
    Date of Patent: October 23, 2001
    Assignee: Union Carbide Chemicals & Plastics Technology Corporation
    Inventors: Jeffrey Scott Kanel, David Robert Bryant, Brian Michael Roesch, Ailene Gardner Phillips
  • Patent number: 6303829
    Abstract: This invention relates to a process for separating one or more products from a reaction product fluid comprising a metal-organophosphorus ligand complex catalyst, optionally free organophosphorus ligand, said one or more products, one or more nonpolar reaction solvents and one or more polar reaction solvents, wherein said process comprises (1) subjecting said reaction product fluid to fractional countercurrent extraction with at least two immiscible extraction solvents, said at least two immiscible extraction solvents comprising at least one nonpolar extraction solvent and at least one polar extraction solvent, to obtain a nonpolar phase comprising said metal-organophosphorus ligand complex catalyst, said optionally free organophosphorus ligand, said one or more nonpolar reaction solvents and said at least one nonpolar extraction solvent and a polar phase comprising said one or more products, said one or more polar reaction solvents and said at least one polar extraction solvent, and (2) recovering said polar
    Type: Grant
    Filed: March 15, 2000
    Date of Patent: October 16, 2001
    Assignee: Union Carbide Chemicals & Plastics Technology Corporation
    Inventors: Jeffrey Scott Kanel, John Nicholas Argyropoulos, Ailene Gardner Phillips, Brian Michael Roesch, John Robert Briggs, Max Min Lee, John Michael Maher, David Robert Bryant
  • Patent number: 6294700
    Abstract: This invention relates to a process for separating one or more products from a reaction product fluid comprising a metal-organophosphorus ligand complex catalyst, optionally free organophosphorus ligand, said one or more products, one or more polar reaction solvents and one or more nonpolar reaction solvents, wherein said process comprises (1) subjecting said reaction product fluid to fractional countercurrent extraction with at least two immiscible extraction solvents, said at least two immiscible extraction solvents comprising at least one polar extraction solvent and at least one nonpolar extraction solvent, to obtain a polar phase comprising said metal-organophosphorus ligand complex catalyst, said optionally free organophosphorus ligand, said one or more polar reaction solvents and said at least one polar extraction solvent and a nonpolar phase comprising said one or more products, said one or more nonpolar reaction solvents and said at least one nonpolar extraction solvent, and (2) recovering said nonpo
    Type: Grant
    Filed: March 15, 2000
    Date of Patent: September 25, 2001
    Assignee: Union Carbide Chemicals & Plastics Technology Corporation
    Inventors: Jeffrey Scott Kanel, John Nicholas Argyropoulos, Ailene Gardner Phillips, Brian Michael Roesch, John Robert Briggs, Max Min Lee, John Michael Maher, David Robert Bryant
  • Patent number: 6187970
    Abstract: This invention relates in part to processes for producing one or more substituted or unsubstituted 1,6-hexanediols which comprise subjecting one or more substituted or unsubstituted penten-1-ols to reductive hydroformylation in the presence of a reductive hydroformylation catalyst, e.g., a metal-organophosphorus ligand complex catalyst, to produce said one or more substituted or unsubstituted 1,6-hexanediols. The substituted and unsubstituted 1,6-hexanediols produced by the processes of this invention can undergo further reaction(s) to afford desired derivatives thereof, e.g., epsilon caprolactone. This invention also relates in part to reaction mixtures containing one or more substituted or unsubstituted 1,6-hexanediols as principal product(s) of reaction.
    Type: Grant
    Filed: April 15, 1997
    Date of Patent: February 13, 2001
    Assignee: Union Carbide Chemicals & Plastics Technology Corporation
    Inventors: John Robert Briggs, Diane Lee Packett, David Robert Bryant, Ailene Gardner Phillips, David James Schreck, Anil Sakharam Guram, Kurt Damar Olson, Thomas Carl Eisenschmid, Eric Bruce Tjaden
  • Patent number: 5892127
    Abstract: This invention relates in part to processes for selectively producing one or more substituted or unsubstituted 1,6-hexanedials, e.g., adipaldehyde, which comprise: (a) subjecting one or more substituted or unsubstituted alkadienes, e.g., butadiene, or a mixture comprising one or more substituted or unsubstituted alkadienes to hydroformylation in the presence of a hydroformylation catalyst, e.g., a metal-organophosphorus ligand complex catalyst, and at an alkadiene partial pressure and/or a carbon monoxide partial pressure sufficient to selectively produce one or more substituted or unsubstituted pentenals or a reaction mixture comprising one or more substituted or unsubstituted pentenals; and (b) subjecting said one or more substituted or unsubstituted pentenals or said reaction mixture comprising one or more substituted or unsubstituted pentenals to hydroformylation in the presence of a hydroformylation catalyst, e.g.
    Type: Grant
    Filed: April 15, 1997
    Date of Patent: April 6, 1999
    Assignee: Union Carbide Chemicals & Plastics Technology Corporation
    Inventors: Diane Lee Packett, John Robert Briggs, David Robert Bryant, Ailene Gardner Phillips
  • Patent number: 5886237
    Abstract: This invention relates in part to processes for selectively producing one or more substituted or unsubstituted alkenals. The process hydroformylates at least one substituted or unsubstituted alkadienes, e.g., butadiene, or a mixture of one or more substituted or unsubstituted alkadienes in the presence of a hydroformylation catalyst, e.g., a metal-organophosphorus ligand complex catalyst, and at an alkadiene and/or carbon monoxide partial pressure sufficient to selectively produce at least one substituted or unsubstituted alkenals, e.g., pentenals. The substituted and unsubstituted alkenals produced by the processes of this invention can undergo further reaction(s) to afford desired derivatives thereof, e.g., hydrogenation to alkenols, particularly pentenols. This invention also relates to reaction mixtures containing one or more substituted or unsubstituted alkenals or alkenols as principal product(s) of those reactions.
    Type: Grant
    Filed: April 15, 1997
    Date of Patent: March 23, 1999
    Assignee: Union Carbide Chemicals & Plastics Technology Corporation
    Inventors: Diane Lee Packett, John Robert Briggs, David Robert Bryant, Ailene Gardner Phillips
  • Patent number: 5821389
    Abstract: This invention relates in part to processes for producing one or more substituted or unsubstituted hydroxyaldehydes, e.g., 6-hydroxyhexanals, which comprise subjecting one or more substituted or unsubstituted alkadienes, e.g., butadiene, to reductive hydroformylation in the presence of a reductive hydroformylation catalyst, e.g., a metal-organophosphorus ligand complex catalyst, and hydroformylation in the presence of a hydroformylation catalyst, e.g., a metal-organophosphorus ligand complex catalyst, to produce one or more substituted or unsubstituted hydroxyaldehydes. The substituted and unsubstituted hydroxyaldehydes produced by the processes of this invention can undergo further reaction(s) to afford desired derivatives thereof, e.g., epsilon caprolactone. This invention also relates in part to reaction mixtures containing one or more substituted or unsubstituted hydroxyaldehydes as principal product(s) of reaction.
    Type: Grant
    Filed: April 15, 1997
    Date of Patent: October 13, 1998
    Assignee: Union Carbide Chemicals & Technology Corporation
    Inventors: John Robert Briggs, Diane Lee Packett, David Robert Bryant, Ailene Gardner Phillips, David James Schreck, Kurt Damar Olson, Erik Bruce Tjaden, Anil Sakharam Guram, Thomas Carl Eisenschmid, Elaine Susan Brigham