Patents by Inventor Aitan Ameti

Aitan Ameti has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9668164
    Abstract: A method, apparatus and computer program product are provided for an active bandwidth management system for a tag target location system. A method is provided including determining a buffer fullness level for a receive buffer in a receiver in a set of one or more receivers, determining, by the processor hub, a set of buffer elements to be removed from the receive buffer in at least one of the receivers based on the buffer fullness level, and communicating to the one or more receivers to remove from the receive buffers the set of receive buffer elements identified by a sequence number.
    Type: Grant
    Filed: April 3, 2015
    Date of Patent: May 30, 2017
    Assignee: ZIH Corp.
    Inventors: Edward A. Richley, Belinda Turner, Chang Wang, Aitan Ameti
  • Publication number: 20160245897
    Abstract: An example disclosed method includes defining a first zone within a monitored area, a first group of receivers covering the first zone; defining a second zone within the monitored area, a second group of receivers covering the second zone; determining, via a processor, a first position of a first tag based on timing measurements obtained via the first group of receivers; determining, via the processor, whether the first position indicates that the first tag is within the first zone; and when the first position indicates that the first tag is not within the first zone, not reporting data associated with the first tag.
    Type: Application
    Filed: May 5, 2016
    Publication date: August 25, 2016
    Inventors: Aitan Ameti, Keming Chen, Robert J. Fontana, Edward A. Richley, Belinda Turner
  • Patent number: 9360547
    Abstract: An ultra wideband (UWB) or short-pulse RF system is disclosed that can be used to precisely locate or track objects (such as personnel, equipment, assets, etc.) in real-time in an arbitrarily large, physically connected or disconnected, multipath and/or noisy environment. A system implementation includes multiple zones or groups of receivers that receives RF signals transmitted by one or more timing reference tags and one or more objects having associated object tags. Each zone or group may share a common receiver. By combining a multiple reference tag system with a virtual group of receivers, i.e., a zoning technique or system, a cost-effective system can be provided that offers scalability and flexibility to monitor a significantly expanded coverage area.
    Type: Grant
    Filed: March 30, 2012
    Date of Patent: June 7, 2016
    Assignee: ZIH CORP.
    Inventors: Aitan Ameti, Keming Chen, Robert J. Fontana, Edward A. Richley, Belinda Turner
  • Publication number: 20150358852
    Abstract: A method, apparatus and computer program product are provided for an active bandwidth management system for a tag target location system. A method is provided including determining a buffer fullness level for a receive buffer in a receiver in a set of one or more receivers, determining, by the processor hub, a set of buffer elements to be removed from the receive buffer in at least one of the receivers based on the buffer fullness level, and communicating to the one or more receivers to remove from the receive buffers the set of receive buffer elements identified by a sequence number.
    Type: Application
    Filed: April 3, 2015
    Publication date: December 10, 2015
    Inventors: Edward A. Richley, Belinda Turner, Chang Wang, Aitan Ameti
  • Publication number: 20150358938
    Abstract: The present invention provides methods for a high-resolution active RTLS tag location determination system that provides for <1 ns TOA accuracy and resolution and significantly reduces the channel effects of multipath interference, even in low SNR applications. To accomplish these objectives, the present invention provides for an iterative and adaptive windowing function in each of the receivers of a receiver grid that captures multiple reflections of multiple transmissions from each of the associated target RTLS tags. The adaptive windowing function is used in conjunction with an asynchronous transmit and receive clock function that effectively increases resolution of TOA detection to levels less than the minimum detection window width associated with each of the receivers in the receiver grid.
    Type: Application
    Filed: June 3, 2015
    Publication date: December 10, 2015
    Inventors: Edward A. Richley, Belinda Turner, Chang Wang, Aitan Ameti
  • Publication number: 20150356332
    Abstract: Systems, methods, apparatuses, and computer readable media are disclosed for providing variable blink rate ultra-wideband (UWB) communications. Some embodiments may provide for a radio frequency (RF) tag including a motion sensor, processing circuitry, and a UWB transmitter. The motion sensor may be configured to generate one or more motion data values indicating motion of the RF tag. The UWB transmitter may be configured to transmit blink data at variable blink rates. The processing circuitry may be configured to receive the one or more motion data values from the motion sensor, determine a blink rate for the UWB transmitter based on the one or more motion data values, and control the UWB transmitter to wirelessly transmit the blink data at the blink rate. In some embodiments, the RF tag may include a UWB receiver and the blink rate may be controlled remotely by a system.
    Type: Application
    Filed: June 4, 2015
    Publication date: December 10, 2015
    Inventors: Belinda Turner, Aitan Ameti, Edward Richley, Alexander Mueggenborg
  • Publication number: 20150002272
    Abstract: Systems, methods, apparatuses, and computer readable media are disclosed for associating a radio frequency identification tag with a participant. In one embodiment, a method is provided for associating an unassociated RF location tag with a participant. The method may include determining an unassociated RF location tag to be associated with the participant, receiving sensor derived data from one or more sensors, determining an identity of the particular participant using the sensor derived data, and associating the identity of the particular participant with the unassociated RF location tag.
    Type: Application
    Filed: June 5, 2014
    Publication date: January 1, 2015
    Inventors: Rodrigo Alonso, Belinda Turner, Aitan Ameti, Edward A. Richley, David Senerchia
  • Patent number: 8705671
    Abstract: Various methods for performing amplifier gain compensation to correct for variations in temperature are provided. One example method includes modifying a gain adjustment value based on a current temperature reading, receiving a signal, applying a gain adjustment to the signal based on the gain adjustment value, comparing the gain adjusted signal to a plurality of thresholds to generate respective comparison outputs, and selecting one of the comparison outputs for use in determining content and timing information of the received signal. Related systems and apparatuses are also provided.
    Type: Grant
    Filed: July 15, 2011
    Date of Patent: April 22, 2014
    Assignee: Zebra Enterprise Solutions Corp.
    Inventors: Aitan Ameti, Edward A. Richley
  • Publication number: 20120188129
    Abstract: An ultra wideband (UWB) or short-pulse RF system is disclosed that can be used to precisely locate or track objects (such as personnel, equipment, assets, etc.) in real-time in an arbitrarily large, physically connected or disconnected, multipath and/or noisy environment. A system implementation includes multiple zones or groups of receivers that receives RF signals transmitted by one or more timing reference tags and one or more objects having associated object tags. Each zone or group may share a common receiver. By combining a multiple reference tag system with a virtual group of receivers, i.e., a zoning technique or system, a cost-effective system can be provided that offers scalability and flexibility to monitor a significantly expanded coverage area.
    Type: Application
    Filed: March 30, 2012
    Publication date: July 26, 2012
    Applicant: MULTISPECTRAL SOLUTIONS, INC.
    Inventors: Aitan Ameti, Keming Chen, Robert J. Fontana, Edward A. Richley, Belinda Turner
  • Publication number: 20120086607
    Abstract: Various methods and apparatuses that utilize a wireless time reference system are provided herein. One example method involves calibrating independent, spatially-located clocks of a geoposition system in order to geolocate an object having an associated object tag. The example method may include transmitting an RF pulse pair, receiving the pulse pair at multiple locations, utilizing respective frequencies of first and second spatially-located clocks to produce count values to effect measurement of an interarrival interval at each of multiple locations, determining a ratio of count values relative to said first and second spatially-located clocks, and utilizing said ratio to calibrate time indications of said clocks. Other related methods and apparatus are also provided.
    Type: Application
    Filed: October 10, 2011
    Publication date: April 12, 2012
    Applicant: Multispectral Solutions, Inc.
    Inventors: Aitan Ameti, Keming Chen, Robert J. Fontana, Edward A. Richley, Belinda Turner
  • Patent number: 8149169
    Abstract: An ultra wideband (UWB) or short-pulse RF system is disclosed that can be used to precisely locate or track objects (such as personnel, equipment, assets, etc.) in real-time in an arbitrarily large, physically connected or disconnected, multipath and/or noisy environment. A system implementation includes multiple zones or groups of receivers that receives RF signals transmitted by one or more timing reference tags and one or more objects having associated object tags. Each zone or group may share a common receiver. By combining a multiple reference tag system with a virtual group of receivers, i.e., a zoning technique or system, a cost-effective system can be provided that offers scalability and flexibility to monitor a significantly expanded coverage area.
    Type: Grant
    Filed: April 28, 2010
    Date of Patent: April 3, 2012
    Assignee: Multispectral Solutions, Inc.
    Inventors: Aitan Ameti, Keming Chen, Robert J. Fontana, Edward A. Richley, Belinda Turner
  • Publication number: 20120014278
    Abstract: Various methods for determining a configuration of a communications system are provided, including methods for determining system node positions. One example method includes generating a node attribute information segment, and adding the node attribute information segment to an attribute information message at a position within the attribute information message indicative of a position of a node within a series string of communications connections. Some of the methods may be implemented within the context of an asset locating system that analyzes the timing of wireless signals to determine a location of the source of the signal. Related systems and apparatuses are also provided.
    Type: Application
    Filed: July 15, 2011
    Publication date: January 19, 2012
    Inventors: Aitan Ameti, Edward A. Richley
  • Publication number: 20120014484
    Abstract: Various methods for performing amplifier gain compensation to correct for variations in temperature are provided. One example method includes modifying a gain adjustment value based on a current temperature reading, receiving a signal, applying a gain adjustment to the signal based on the gain adjustment value, comparing the gain adjusted signal to a plurality of thresholds to generate respective comparison outputs, and selecting one of the comparison outputs for use in determining content and timing information of the received signal. Related systems and apparatuses are also provided.
    Type: Application
    Filed: July 15, 2011
    Publication date: January 19, 2012
    Inventors: Aitan Ameti, Edward A. Richley
  • Patent number: 8063826
    Abstract: Instead of normalizing time reference of independent spatially-located clocks using a reference tag transmission from known location, the present invention uses an interarrival time interval between a pulse pair of UWB pulses as a timing metric. Thus, a method of synchronizing spatially-located clocks or normalizing time indications thereof comprises transmitting a UWB pulse pair, determining at first and second monitoring stations a respective count value indicative of a locally measured time interval between received pulse pairs, determining a ratio between clock counts of first and second monitoring stations, and utilizing the ratio to determine clock skew, e.g., a timing correction to be applied to respective local clocks of the monitoring stations.
    Type: Grant
    Filed: June 15, 2009
    Date of Patent: November 22, 2011
    Assignee: Multispectral Solutions, Inc.
    Inventors: Aitan Ameti, Keming Chen, Robert J. Fontana, Edward A. Richley, Belinda Turner
  • Patent number: 7710322
    Abstract: An ultra wideband (UWB) or short-pulse RF system is disclosed that can be used to precisely locate or track objects (such as personnel, equipment, assets, etc.) in real-time in an arbitrarily large, physically connected or disconnected, multipath and/or noisy environment. A system implementation includes multiple zones or groups of receivers that receives RF signals transmitted by one or more timing reference tags and one or more objects having associated object tags. Each zone or group may share a common receiver. By combining a multiple reference tag system with a virtual group of receivers, i.e., a zoning technique or system, a cost-effective system can be provided that offers scalability and flexibility to monitor a significantly expanded coverage area.
    Type: Grant
    Filed: January 13, 2006
    Date of Patent: May 4, 2010
    Assignee: Multispectral Solutions, Inc.
    Inventors: Aitan Ameti, Keming Chen, Robert J. Fontana, Edward A. Richley, Belinda Turner
  • Publication number: 20090243934
    Abstract: Instead of normalizing time reference of independent spatially-located clocks using a reference tag transmission from known location, the present invention uses an interarrival time interval between a pulse pair of UWB pulses as a timing metric. Thus, a method of synchronizing spatially-located clocks or normalizing time indications thereof comprises transmitting a UWB pulse pair, determining at first and second monitoring stations a respective count value indicative of a locally measured time interval between received pulse pairs, determining a ratio between clock counts of first and second monitoring stations, and utilizing the ratio to determine clock skew, e.g., a timing correction to be applied to respective local clocks of the monitoring stations.
    Type: Application
    Filed: June 15, 2009
    Publication date: October 1, 2009
    Inventors: Aitan Ameti, Keming Chen, Robert J. Fontana, Edward A. Richley, Belinda Turner
  • Patent number: 7492316
    Abstract: Instead of normalizing time reference of independent spatially-located clocks using a reference tag transmission from known location, the present invention uses an interarrival time interval between a pulse pair of UWB pulses as a timing metric. Thus, a method of synchronizing spatially-located clock or normalizing time indications thereof comprises transmitting a UWB pulse pair, determining at first and second monitoring stations a respective count value indicative of a locally measured time interval between received pulse pairs, determining a ratio between clock counts of first and second monitoring stations, and utilizing the ratio to determine clock skew, e.g., a timing correction to be applied to respective local clocks of the monitoring stations.
    Type: Grant
    Filed: July 6, 2006
    Date of Patent: February 17, 2009
    Assignee: Multispectral Solutions, Inc.
    Inventors: Aitan Ameti, Keming Chen, Robert J. Fontana, Edward A. Richley, Belinda Turner
  • Patent number: 6882315
    Abstract: An RF object locating system and method that uses or includes a set of N (N>2) receivers (monitoring stations) located at fixed positions in and/or about a region to be monitored, one or more reference transmitters that transmit a timing reference, a location processor that determines object location based on time-of-arrival measurements, and at least one object having an untethered tag transmitter that transmits RF pulses, which may additionally include object ID or other information. Free-running counters in the monitoring stations, whose phase offsets are determined relative to a reference transmitter, are frequency-locked with a centralized reference clock. Time-of-arrival measurements made at the monitoring stations may be stored and held in a local memory until polled by the location processor.
    Type: Grant
    Filed: October 18, 2001
    Date of Patent: April 19, 2005
    Assignee: Multispectral Solutions, Inc.
    Inventors: Edward A. Richley, Robert J. Fontana, Donald V. Perino, Aitan Ameti
  • Publication number: 20040108954
    Abstract: An RF object locating system and method that uses or includes a set of N (N>2) receivers (monitoring stations) located at fixed positions in and/or about a region to be monitored, one or more reference transmitters that transmit a timing reference, a location processor that determines object location based on time-of-arrival measurements, and at least one object having an untethered tag transmitter that transmits RF pulses, which may additionally include object ID or other information. Free-running counters in the monitoring stations, whose phase offsets are determined relative to a reference transmitter, are frequency-locked with a centralized reference clock. Time-of-arrival measurements made at the monitoring stations may be stored and held in a local memory until polled by the location processor.
    Type: Application
    Filed: October 18, 2001
    Publication date: June 10, 2004
    Inventors: Edward A. Richley, Robert J. Fontana, Donald V. Perino, Aitan Ameti
  • Patent number: 5408628
    Abstract: A solid state data recorder employs a solid state memory to record data in the form of data words of variable length transmitted to the memory on a flexible width data bus. The memory is monitored to determine failed memory locations, and such locations are mapped out so as not to be used to store data. Bus lines are selected lines in accordance with mapped out memory locations in order to transfer the variable length data words to and from the memory. By employing the variable length data words and flexible width data bus, loss of useable recording space in the memory is very gradual, thus minimizing the amount of spare memory area required.
    Type: Grant
    Filed: July 7, 1992
    Date of Patent: April 18, 1995
    Assignee: Odetics, Inc.
    Inventor: Aitan Ameti