Patents by Inventor Ajay Raghavan

Ajay Raghavan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200089490
    Abstract: Embodiments disclosed herein provide systems, methods, and computer readable media for container based application reification. In a particular embodiment, an application reification system is provided including one or more computer readable storage media and a processing system operatively coupled with the one or more computer readable storage media. The application reification system further includes program instructions stored on the one or more computer readable storage media that, when read and executed by the processing system, direct the processing system to preserve a version of application data at a first time and a configuration of an application at the first time. At a second time subsequent to the first time, the program instructions direct the processing system to create a template for a container containing the application in the configuration and a pointer to the version of the application data in a secondary storage repository.
    Type: Application
    Filed: November 22, 2019
    Publication date: March 19, 2020
    Inventors: Ajay Raghavan, Tarun Thakur, Prasenjit Sarkar
  • Publication number: 20200019890
    Abstract: One embodiment provides a system for facilitating anomaly detection. During operation, the system determines, by a computing device, a set of training instances, wherein a training instance represents a single class of data within a predefined range. The system computes a similarity score for each testing instance in a set of testing instances, wherein the similarity score is based on a similarity function which takes as input a respective testing instance and the set of training instances. The system determines a boundary threshold based on an ordering of the similarity score for each testing instance. The system classifies a first testing instance as an anomaly responsive to determining that the first testing instance falls outside the boundary threshold, thereby enhancing data mining and outlier detection in the single class of data using unlabeled training instances.
    Type: Application
    Filed: July 11, 2018
    Publication date: January 16, 2020
    Applicant: Palo Alto Research Center Incorporated
    Inventors: Ryan A. Rossi, Ajay Raghavan, Jungho Park
  • Publication number: 20200006818
    Abstract: A battery includes a folded bicell battery stack with an embedded fiber optic cable and sensor. A cell casing encloses the bicell stack with at least one fiber optic cable is embedded within the battery. The fiber optic cable includes an internal portion disposed within the cell casing and having at least one optical sensor disposed thereon. An external portion of the fiber optic cable protrudes from the casing. A sealing gasket is disposed at least partially around the fiber optic cable and between the cell sealing edges at a point of entry of the fiber optic cable into the battery.
    Type: Application
    Filed: September 3, 2019
    Publication date: January 2, 2020
    Inventors: Ajay Raghavan, Peter Kiesel, Lars Wilko Sommer, Bhaskar Saha, Saroj Sahu, Alexander Lochbaum, Tobias Staudt, Chang-Jun Bae, Mohamed Alamgir, Hoe Jin Hah, Bokkyu Choi, Gyu-Ok Hwang, Geun-Chang Chung
  • Publication number: 20190317758
    Abstract: Embodiments disclosed herein provide systems, methods, and computer readable media for container based application reification. In a particular embodiment, an application reification system is provided including one or more computer readable storage media and a processing system operatively coupled with the one or more computer readable storage media. The application reification system further includes program instructions stored on the one or more computer readable storage media that, when read and executed by the processing system, direct the processing system to preserve a version of application data at a first time and a configuration of an application at the first time. At a second time subsequent to the first time, the program instructions direct the processing system to create a template for a container containing the application in the configuration and a pointer to the version of the application data in a secondary storage repository.
    Type: Application
    Filed: June 26, 2019
    Publication date: October 17, 2019
    Inventors: Ajay Raghavan, Tarun Thakur, Prasenjit Sarkar
  • Patent number: 10446886
    Abstract: A battery includes a folded bicell battery stack with an embedded fiber optic cable and sensor. A cell casing encloses the bicell stack with at least one fiber optic cable is embedded within the battery. The fiber optic cable includes an internal portion disposed within the cell casing and having at least one optical sensor disposed thereon. An external portion of the fiber optic cable protrudes from the casing. A sealing gasket is disposed at least partially around the fiber optic cable and between the cell sealing edges at a point of entry of the fiber optic cable into the battery.
    Type: Grant
    Filed: July 23, 2014
    Date of Patent: October 15, 2019
    Assignee: Palo Alto Research Center Incorporated
    Inventors: Ajay Raghavan, Peter Kiesel, Lars Wilko Sommer, Bhaskar Saha, Saroj Sahu, Alexander Lochbaum, Tobias Staudt, Chang-Jun Bae, Mohamed Alamgir, Hoe Jin Hah, Bokkyu Choi, Gyu-Ok Hwang, Geun-Chang Chung
  • Patent number: 10403922
    Abstract: A method of fabricating an electrochemical energy storage cell such as a battery or supercapacitor involves positioning a portion of a fiber optic cable that includes at least one optical fiber sensor over a current collector layer. The electrode material of the energy storage cell is deposited over the current collector layer and the fiber optic cable.
    Type: Grant
    Filed: July 23, 2014
    Date of Patent: September 3, 2019
    Assignee: Palo Alto Research Center Incorporated
    Inventors: Chang-Jun Bae, Eric J. Shrader, Ajay Raghavan, Peter Kiesel, Saroj Sahu
  • Publication number: 20190250909
    Abstract: Embodiments disclosed herein provide systems, methods, and computer readable media for container based application reification. In a particular embodiment, an application reification system is provided including one or more computer readable storage media and a processing system operatively coupled with the one or more computer readable storage media. The application reification system further includes program instructions stored on the one or more computer readable storage media that, when read and executed by the processing system, direct the processing system to preserve a version of application data at a first time and a configuration of an application at the first time. At a second time subsequent to the first time, the program instructions direct the processing system to create a template for a container containing the application in the configuration and a pointer to the version of the application data in a secondary storage repository.
    Type: Application
    Filed: April 24, 2019
    Publication date: August 15, 2019
    Inventors: Ajay Raghavan, Tarun Thakur, Prasenjit Sarkar
  • Patent number: 10330734
    Abstract: A system detects and/or predicts metal ion plating events of a metal ion energy storage device. The system includes an optical sensor disposed internally within or externally on a metal ion energy storage device wherein the optical sensor has an optical output that changes in response to strain within a metal ion energy storage device. A current sensor senses current through the metal ion energy storage device. Plating detection circuitry measures a wavelength shift in the optical output of the optical sensor and estimates a state of charge (SOC) of the metal ion energy storage device based on the current. An expected wavelength shift is determined from the estimated SOC. A plating event can be detected and/or predicted based on the difference between the expected wavelength shift and the measured wavelength shift.
    Type: Grant
    Filed: July 18, 2017
    Date of Patent: June 25, 2019
    Assignee: Palo Alto Research Center Incorporated
    Inventors: Bhaskar Saha, Anurag Ganguli, Ajay Raghavan, Peter Kiesel, Kyle Arakaki, Julian Schwartz
  • Patent number: 10317256
    Abstract: A monitoring system includes optical sensors disposed on one or more fiber optic waveguides. Each optical sensor is spaced apart from other optical sensors and is disposed at a location along a route defined by a transportation structure that supports a moveable conveyance. The plurality of optical sensors are mechanically coupled to one or both of the transportation structure and the moveable conveyance. Each optical sensor provides an optical output signal responsive to vibrational emissions of one or both of the transportation structure and the conveyance. The monitoring system includes a detector unit configured to convert optical output signals from the optical sensors to electrical signals. A data acquisition controller synchronizes recordation of the electrical signals with movement of the conveyance.
    Type: Grant
    Filed: April 14, 2017
    Date of Patent: June 11, 2019
    Assignee: Palo Alto Research Center Incorporated
    Inventors: Ajay Raghavan, Kyle Arakaki, Andreas Schuh, Alex Hegyi, Peter Kiesel, Anurag Ganguli
  • Publication number: 20190025376
    Abstract: A system detects and/or predicts metal ion plating events of a metal ion energy storage device. The system includes an optical sensor disposed internally within or externally on a metal ion energy storage device wherein the optical sensor has an optical output that changes in response to strain within a metal ion energy storage device. A current sensor senses current through the metal ion energy storage device. Plating detection circuitry measures a wavelength shift in the optical output of the optical sensor and estimates a state of charge (SOC) of the metal ion energy storage device based on the current. An expected wavelength shift is determined from the estimated SOC. A plating event can be detected and/or predicted based on the difference between the expected wavelength shift and the measured wavelength shift.
    Type: Application
    Filed: July 18, 2017
    Publication date: January 24, 2019
    Inventors: Bhaskar Saha, Anurag Ganguli, Ajay Raghavan, Peter Kiesel, Kyle Arakaki, Julian Schwartz
  • Publication number: 20190011491
    Abstract: A monitoring system for a power grid includes one or more power transformer monitors. Each power transformer monitor includes a plurality of optical sensors disposed on one or more optical fibers that sense parameters of the power transformer. Each optical sensor is configured to sense a power transformer parameter that is different from a power transformer parameter sensed by at least one other sensor of the plurality of optical sensors. An optical coupler spatially disperses optical signals from the optical sensors according to wavelength. A detector unit converts optical signals of the optical sensors to electrical signals representative of the sensed power transformer parameters.
    Type: Application
    Filed: July 6, 2017
    Publication date: January 10, 2019
    Inventors: Ajay Raghavan, Peter Kiesel
  • Publication number: 20180332666
    Abstract: Various applications for structured CNT-engineered materials are disclosed herein. In one application, systems are disclosed, wherein a structured CNT-engineered material forms at least part of an object capable of providing its own structural feedback. In another application, systems are disclosed, wherein a structured CNT-engineered material forms at least part of an object capable of generating heat. In yet another application, systems are disclosed, wherein a structured CNT-engineered material forms at least part of an object capable of functioning as an antenna, for example, for receiving, transmitting, absorbing and/or dissipating a signal. In still another application, systems are disclosed, wherein a structured CNT-engineered material forms at least part of an object capable of serving as a conduit for thermal or electrical energy.
    Type: Application
    Filed: December 4, 2017
    Publication date: November 15, 2018
    Inventors: Seth S. Kessler, Ajay Raghavan, Brian L. Wardle
  • Publication number: 20180308292
    Abstract: One embodiment provides a system that facilitates development of a degradation model. During operation, the system initializes, for a physical asset in a cluster, a set of maintenance times randomly and based on constraints associated with the physical asset. The system estimates model parameters for the physical asset based on a degradation model, which indicates the set of maintenance times, a value of a measured characteristic for the physical asset at a given inspection time, a number of inspections, and a time for a respective inspection. The system calculates updated values for the set of maintenance times based on the degradation model and the estimated model parameters. In response to determining that an average change in maintenance times over all the physical assets in the cluster is greater than a predetermined threshold, the system re-estimates the model parameters and re-calculates the updated values for the set of maintenance times.
    Type: Application
    Filed: April 25, 2017
    Publication date: October 25, 2018
    Applicant: Palo Alto Research Center Incorporated
    Inventors: Anurag Ganguli, Ajay Raghavan
  • Publication number: 20180299301
    Abstract: A monitoring system includes optical sensors disposed on one or more fiber optic waveguides. Each optical sensor is spaced apart from other optical sensors and is disposed at a location along a route defined by a transportation structure that supports a moveable conveyance. The plurality of optical sensors are mechanically coupled to one or both of the transportation structure and the moveable conveyance. Each optical sensor provides an optical output signal responsive to vibrational emissions of one or both of the transportation structure and the conveyance. The monitoring system includes a detector unit configured to convert optical output signals from the optical sensors to electrical signals. A data acquisition controller synchronizes recordation of the electrical signals with movement of the conveyance.
    Type: Application
    Filed: April 14, 2017
    Publication date: October 18, 2018
    Inventors: Ajay Raghavan, Kyle Arakaki, Andreas Schuh, Alex Hegyi, Peter Kiesel, Anurag Ganguli
  • Patent number: 9839073
    Abstract: Various applications for structured CNT-engineered materials are disclosed herein. In one application, systems are disclosed, wherein a structured CNT-engineered material forms at least part of an object capable of providing its own structural feedback. In another application, systems are disclosed, wherein a structured CNT-engineered material forms at least part of an object capable of generating heat. In yet another application, systems are disclosed, wherein a structured CNT-engineered material forms at least part of an object capable of functioning as an antenna, for example, for receiving, transmitting, absorbing and/or dissipating a signal. In still another application, systems are disclosed, wherein a structured CNT-engineered material forms at least part of an object capable of serving as a conduit for thermal or electrical energy.
    Type: Grant
    Filed: August 29, 2016
    Date of Patent: December 5, 2017
    Assignees: Metis Design Corporation, Massachusetts Institute of Technology
    Inventors: Seth S. Kessler, Ajay Raghavan, Brian L. Wardle
  • Patent number: 9677916
    Abstract: An optical coupler includes at least one input waveguide and a plurality of output waveguides. The optical coupler spatially disperses optical signals carried on the input waveguide according to wavelength to the output waveguides. The input waveguides and the output waveguides are arranged to provide crosstalk between optical signals carried on the output waveguides.
    Type: Grant
    Filed: July 15, 2014
    Date of Patent: June 13, 2017
    Assignee: PALO ALTO RESEARCH CENTER INCORPORATED
    Inventors: Alex Hegyi, Peter Kiesel, Ajay Raghavan
  • Patent number: 9583796
    Abstract: A method for determining an operating state (e.g., state-of-charge or state-of-health) and/or generating management (charge/discharge) control information in a system including an electrochemical energy device (EED, e.g., a rechargeable Li-ion battery, supercapacitor or fuel cell) that uses optical sensors to detect the intercalation stage change events occurring in the EED. The externally or internally mounted optical sensors measure operating parameter (e.g., strain and/or temperature) changes of the EED during charge/recharge cycling, and transmit measured parameter data using light signals sent over optical fibers to a detector/converter. A processor then analyzes the measured parameter data, e.g., using a model-based estimation process, to detect intercalation stage changes (i.e., crystalline structure changes caused by migration of guest species, such as Li-ions, between the EED's anode and cathode), and generates the operating state and charge/discharge control information based the analysis.
    Type: Grant
    Filed: April 1, 2014
    Date of Patent: February 28, 2017
    Assignee: PALO ALTO RESEARCH CENTER INCORPORATED
    Inventors: Bhaskar Saha, Ajay Raghavan, Peter Kiesel, Lars Wilko Sommer, Alexander Lochbaum, Tobias Staudt, Saroj Kumar Sahu, Anurag Ganguli
  • Publication number: 20170033414
    Abstract: A system includes a first optical sensor sensitive to both a parameter of interest, Parameter1, and at least one confounding parameter, Parameter2 and a second optical sensor sensitive only to the confounding parameter. Measurement circuitry measures M1 in response to light scattered by the first optical sensor, where M1=value of Parameter1+K*value of Parameter2. The measurement circuitry also measures M2 in response to light scattered by the second optical sensor, where M2=value of Parameter2. Compensation circuitry determines a compensation factor, K, for the confounding parameter based on measurements of M1 and M2 taken over multiple load/unload cycles or over one or more thermal cycles. The compensation factor is used to determine the parameter of interest.
    Type: Application
    Filed: July 28, 2015
    Publication date: February 2, 2017
    Inventors: Anurag Ganguli, Julian Schwartz, Ajay Raghavan, Peter Kiesel, Bhaskar Saha, Saroj Sahu, Lars Wilko Sommer
  • Patent number: 9553465
    Abstract: A battery management system includes one or more fiber optic sensors configured to be disposed within an electrochemical battery. Each fiber optic sensor is capable of receiving input light and providing output light that varies based on the input light and an amount of free or dissolved gas present within the battery. A detector detects the output light and generates an electrical detector signal in response to the output light. Battery management circuitry determines the state of the battery based at least in part on the detector signal.
    Type: Grant
    Filed: April 21, 2014
    Date of Patent: January 24, 2017
    Assignee: PALO ALTO RESEARCH CENTER INCORPORATED
    Inventors: Ajay Raghavan, Peter Kiesel, Alexander Lochbaum, Bhaskar Saha, Lars Wilko Sommer, Tobias Staudt
  • Publication number: 20170019954
    Abstract: Various applications for structured CNT-engineered materials are disclosed herein. In one application, systems are disclosed, wherein a structured CNT-engineered material forms at least part of an object capable of providing its own structural feedback. In another application, systems are disclosed, wherein a structured CNT-engineered material forms at least part of an object capable of generating heat. In yet another application, systems are disclosed, wherein a structured CNT-engineered material forms at least part of an object capable of functioning as an antenna, for example, for receiving, transmitting, absorbing and/or dissipating a signal. In still another application, systems are disclosed, wherein a structured CNT-engineered material forms at least part of an object capable of serving as a conduit for thermal or electrical energy.
    Type: Application
    Filed: August 29, 2016
    Publication date: January 19, 2017
    Inventors: Seth S. Kessler, Ajay Raghavan, Brian L. Wardle