Patents by Inventor Ajit Pillai

Ajit Pillai has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8983605
    Abstract: Techniques are provided for use by implantable medical devices such as cardiac resynchronization therapy (CRT) devices for detecting pulmonary edema based on transthoracic impedance sensed using cardiac pacing/sensing leads, wherein detection can be performed while lead maturation occurs. Briefly, the implantable device determines whether the leads are within an initial post-implant interval following implant during which lead maturation generally occurs. The device then detects pulmonary edema or related medical conditions within the patient based on transthoracic impedance using a set of detection parameters adjusted for use during the post-implant interval. Thus, rather than “blanking” impedance data during lead maturation, the device instead detects and processes impedance during this period to identify possible episodes of pulmonary edema so that appropriate measures can be undertaken, such as delivery of warnings or titration of appropriate medications.
    Type: Grant
    Filed: May 28, 2013
    Date of Patent: March 17, 2015
    Assignee: Pacesetter, Inc
    Inventors: Ajit Pillai, Cecilia Qin Xi
  • Publication number: 20140214110
    Abstract: An implantable device monitors and treats heart failure, pulmonary edema, and hemodynamic conditions and in some cases applies therapy. In one implementation, the implantable device applies a high-frequency multi-phasic pulse waveform over multiple-vectors through tissue. The waveform has a duration less than the charging time constant of electrode-electrolyte interfaces in vivo to reduce intrusiveness while increasing sensitivity and specificity for trending parameters. The waveform can be multiplexed over multiple vectors and the results cross-correlated or subjected to probabilistic analysis or thresholding schemata to stage heart failure or pulmonary edema. In one implementation, a fractionation morphology of a sensed impedance waveform is used to trend intracardiac pressure to stage heart failure and to regulate cardiac resynchronization therapy. The waveform also provides unintrusive electrode integrity checks and 3-D impedancegrams.
    Type: Application
    Filed: November 1, 2013
    Publication date: July 31, 2014
    Applicant: Pacesetter, Inc.
    Inventors: Weiqun Yang, Malin Ohlander, Louis Wong, Nils Holmstrom, Cem Shaquer, Euljoon Park, Dorin Panescu, Shahrooz Shahparnia, Andre Walker, Ajit Pillai, Mihir Naware
  • Patent number: 8600497
    Abstract: An implantable device monitors and treats heart failure, pulmonary edema, and hemodynamic conditions and in some cases applies therapy. In one implementation, the implantable device applies a high-frequency multi-phasic pulse waveform over multiple-vectors through tissue. The waveform has a duration less than the charging time constant of electrode-electrolyte interfaces in vivo to reduce intrusiveness while increasing sensitivity and specificity for trending parameters. The waveform can be multiplexed over multiple vectors and the results cross-correlated or subjected to probabilistic analysis or thresholding schemata to stage heart failure or pulmonary edema. In one implementation, a fractionation morphology of a sensed impedance waveform is used to trend intracardiac pressure to stage heart failure and to regulate cardiac resynchronization therapy. The waveform also provides unintrusive electrode integrity checks and 3-D impedancegrams.
    Type: Grant
    Filed: November 9, 2006
    Date of Patent: December 3, 2013
    Assignee: Pacesetter, Inc.
    Inventors: Weiqun Yang, Malin Ohlander, Louis Wong, Nils Holmstrom, Cem Shaquer, Euljoon Park, Dorin Panescu, Shahrooz Shahparnia, Andre Walker, Ajit Pillai, Mihir Naware
  • Publication number: 20130261492
    Abstract: Techniques are provided for use by implantable medical devices such as cardiac resynchronization therapy (CRT) devices for detecting pulmonary edema based on transthoracic impedance sensed using cardiac pacing/sensing leads, wherein detection can be performed while lead maturation occurs. Briefly, the implantable device determines whether the leads are within an initial post-implant interval following implant during which lead maturation generally occurs. The device then detects pulmonary edema or related medical conditions within the patient based on transthoracic impedance using a set of detection parameters adjusted for use during the post-implant interval. Thus, rather than “blanking” impedance data during lead maturation, the device instead detects and processes impedance during this period to identify possible episodes of pulmonary edema so that appropriate measures can be undertaken, such as delivery of warnings or titration of appropriate medications.
    Type: Application
    Filed: May 28, 2013
    Publication date: October 3, 2013
    Inventors: Ajit Pillai, Cecilia Qin Xi
  • Patent number: 8473054
    Abstract: Techniques are provided for use by implantable medical devices such as cardiac resynchronization therapy (CRT) devices for detecting pulmonary edema based on transthoracic impedance sensed using cardiac pacing/sensing leads, wherein detection can be performed while lead maturation occurs. Briefly, the implantable device determines whether the leads are within an initial post-implant interval following implant during which lead maturation generally occurs. The device then detects pulmonary edema or related medical conditions within the patient based on transthoracic impedance using a set of detection parameters adjusted for use during the post-implant interval. Thus, rather than “blanking” impedance data during lead maturation, the device instead detects and processes impedance during this period to identify possible episodes of pulmonary edema so that appropriate measures can be undertaken, such as delivery of warnings or titration of appropriate medications.
    Type: Grant
    Filed: May 28, 2009
    Date of Patent: June 25, 2013
    Assignee: Pacesetter, Inc.
    Inventors: Ajit Pillai, Cecilia Qin Xi
  • Publication number: 20100305641
    Abstract: Techniques are provided for use by implantable medical devices such as cardiac resynchronization therapy (CRT) devices for detecting pulmonary edema based on transthoracic impedance sensed using cardiac pacing/sensing leads, wherein detection can be performed while lead maturation occurs. Briefly, the implantable device determines whether the leads are within an initial post-implant interval following implant during which lead maturation generally occurs. The device then detects pulmonary edema or related medical conditions within the patient based on transthoracic impedance using a set of detection parameters adjusted for use during the post-implant interval. Thus, rather than “blanking” impedance data during lead maturation, the device instead detects and processes impedance during this period to identify possible episodes of pulmonary edema so that appropriate measures can be undertaken, such as delivery of warnings or titration of appropriate medications.
    Type: Application
    Filed: May 28, 2009
    Publication date: December 2, 2010
    Inventors: Ajit Pillai, Cecilia Qin Xi
  • Patent number: 7676264
    Abstract: Techniques are provided for detecting and evaluating ventricular dyssynchrony based on morphological features of the T-wave and for controlling therapy in response thereto. For example, the number of peaks in the T-wave, the area under the peaks, the number of points of inflection, and the slope of the T-wave can be used to detect ventricular dyssynchrony and evaluate its severity. As ventricular dyssynchrony often arises due to heart failure, the degree of dyssynchrony may also be used as a proxy for tracking the progression of heart failure. Pacing therapy is automatically and adaptively adjusted based on the degree of ventricular dyssynchrony so as to reduce the dyssynchrony and thereby improve cardiac function.
    Type: Grant
    Filed: April 13, 2007
    Date of Patent: March 9, 2010
    Assignee: Pacesetter, Inc.
    Inventors: Ajit Pillai, Mihir Naware, Dorin Panescu
  • Publication number: 20090287103
    Abstract: Patient activity and heart rate (HR) are monitored. For each of a plurality of time periods, periods of patient exercise and/or patient activity, if any, are detected based on the monitored patient activity and HR and an activity threshold. A cumulative duration of exercise and/or a cumulative duration of activity is/are determined for each time period, and the peak exercise HR for each period of patient exercise is detected. Information is stored, including duration information indicative of the cumulative duration of exercise and/or the cumulative duration of activity for each time period, and peak exercise information associated with the period of patient exercise during which the highest peak exercise HR occurred for each time period.
    Type: Application
    Filed: May 14, 2008
    Publication date: November 19, 2009
    Applicant: PACESETTER, INC.
    Inventor: Ajit Pillai