Patents by Inventor Ajoy P. Raje

Ajoy P. Raje has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190161688
    Abstract: The invention relates to removing contaminants from hydrocarbon oil or carbon precursor oil using solid sorbents that are comprised primarily of carbon and preferably of coke particles. The coke particles have an affinity for contaminants in hydrocarbon oil and carbon precursor oil and are sized to be filtered from the liquid fuel without plugging. As the contaminants agglomerate onto the solid sorbent, the resulting particles form a filter cake on conventional filter materials in such a way as to allow the hydrocarbon oil or carbon precursor oil to pass on through without significant pressure drop or delay.
    Type: Application
    Filed: January 31, 2019
    Publication date: May 30, 2019
    Applicant: PHILLIPS 66 COMPANY
    Inventors: Zhenhua Mao, Bruce A. Newman, Ajoy P. Raje
  • Patent number: 7067562
    Abstract: The present invention presents an iron-based Fischer-Tropsch catalyst having a low water-gas shift activity and high selectivity and productivity toward a hydrocarbon wax wherein said catalyst comprises iron; silver; sodium, lithium, potassium, rubidium and/or cesium; optionally, calcium, magnesium, boron, and/or aluminum; and a silica structural promoter. The present invention further presents a method of making a precipitated iron-based Fischer-Tropsch catalyst. The present invention still further presents a process for producing hydrocarbons using the iron-based, precipitated Fischer-Tropsch catalyst of the present invention.
    Type: Grant
    Filed: December 20, 2002
    Date of Patent: June 27, 2006
    Assignee: ConocoPhillips Company
    Inventors: Rafael L. Espinoza, Kandaswamy Jothimurugesan, Ajoy P. Raje
  • Patent number: 7056955
    Abstract: According to a preferred embodiment, the present invention features a bulk catalyst that includes precipitated cobalt metal. The precipitated cobalt catalyst further includes a textural promoter, a binder and optionally a Group I metal. The method of making the catalyst is optimized so as to enhance attrition resistance and improve activity. According to some embodiments, the present catalyst is made by a method that includes one or a combination of: calcination under optimized temperature conditions; exposure to an acidic solution; and addition of a binder to a suspension of a precipitate. According to some embodiments, a Fischer-Tropsch process includes contacting the present catalyst with a feed stream containing carbon monoxide and hydrogen so as to produce hydrocarbons.
    Type: Grant
    Filed: December 22, 2003
    Date of Patent: June 6, 2006
    Assignee: ConocoPhillips Company
    Inventors: Rafael L. Espinoza, Kandaswamy Jothimurugesan, Ajoy P. Raje, Kevin L. Coy, Nithya Srinivasan
  • Patent number: 7045554
    Abstract: The present invention is generally related towards methods for preparing and using a more stable synthesis catalysts. In particular, the present invention is directed towards treating synthesis catalysts with low levels of oxygen to deactivate the smaller more unstable metal crystallites present in the catalyst matrix. The process can be carried out either prior to and/or simultaneously with the synthesis reaction.
    Type: Grant
    Filed: September 3, 2003
    Date of Patent: May 16, 2006
    Assignee: ConocoPhillips Company
    Inventors: Ajoy P. Raje, Rafael Espinoza
  • Patent number: 7001928
    Abstract: Methods and apparatus for improving the efficiency and effectiveness of in situ reduction of a Fischer-Tropsch catalyst slurry. The preferred embodiments of the present invention are characterized by a system that utilizes a co-feed of carbon monoxide along with the reducing gas into a reduction vessel maintained at an elevated temperature. As the metal oxide reduces to the active Fischer-Tropsch metal, the carbon monoxide acts as a poison to hydrogenolysis and reduces the loss of liquid from the slurry and the production of methane. The carbon monoxide is generally in parts-per-million quantities and will achieve the desired results in quantities less than 5,000 ppm, preferably less than 2,000 ppm.
    Type: Grant
    Filed: September 22, 2003
    Date of Patent: February 21, 2006
    Assignee: ConocoPhillips Company
    Inventor: Ajoy P. Raje
  • Patent number: 6962947
    Abstract: A process is disclosed for regenerating a catalyst used in a process for synthesizing hydrocarbons. The synthesis process involves contacting a feed stream comprising hydrogen and carbon monoxide with a catalyst in a reaction zone maintained at conversion-promoting conditions effective to produce an effluent stream comprising hydrocarbons. The regeneration process involves contacting a deactivated Fischer-Tropsch catalyst with a regeneration gas under regeneration-promoting conditions that include a pressure lower than the mean Fischer-Tropsch reaction pressure, for a period of time sufficient to reactivate the Fischer-Tropsch catalyst.
    Type: Grant
    Filed: January 13, 2005
    Date of Patent: November 8, 2005
    Assignee: ConocoPhillips Company
    Inventors: Harold A. Wright, Ajoy P. Raje, Rafael L. Espinoza
  • Patent number: 6949488
    Abstract: Methods and apparatus for providing the heat required to maintain the desired temperature for catalyst regeneration. The catalyst is heated by contacting a reactant gas mixture with the catalyst in order to initiate an exothermic reaction and, once the desired temperature is achieved, exposing the catalyst to a regenerating gas. The temperature may also be maintained by heating the reactant gas mixture prior to contacting the catalyst and/or adding a liquid, which may be heated, to the catalyst. For heating a Fischer-Tropsch catalyst for regeneration, the reactant gas preferably contains less than 12 mole percent carbon monoxide and more preferably contains between 1 and 4 mole percent carbon monoxide.
    Type: Grant
    Filed: September 20, 2002
    Date of Patent: September 27, 2005
    Assignee: ConocoPhillips Company
    Inventors: Barbara A. Belt, Stephen R. Landis, Sergio R. Mohedas, Ajoy P. Raje
  • Patent number: 6897246
    Abstract: A process for reducing C2-C9 olefin formation by recycling them to a Fischer-Tropsch hydrocarbon synthesis process and promoting recycled olefins chain growth comprises contacting a gas feed comprising a mixture of H2 and CO with a catalyst in a reactor system at conditions effective to produce a hydrocarbon product stream including C2-C9 olefins, separating a C2-C9 olefins-rich stream from the hydrocarbon product stream to form a light olefin recycle stream and recycling the light olefin recycle stream to the reactor system at a point in the reactor system where the H2:CO ratio is low relative to the H2:CO ratio in the rest of the reactor system. Depending on whether the initial H2:CO ratio is greater or less than the usage ratio of the selected catalyst, the recycled olefins can be returned to the system up- or downstream of the reactor system.
    Type: Grant
    Filed: November 12, 2002
    Date of Patent: May 24, 2005
    Assignee: ConocoPhillips Company
    Inventors: Rafael L. Espinoza, Ajoy P. Raje, Doug S. Jack
  • Patent number: 6878655
    Abstract: The present invention is generally related towards the regeneration of hydrocarbon synthesis catalysts. In particular, the present invention is directed towards the regeneration of deactivated Fischer-Tropsch type catalysts using a two step process wherein the catalyst is first prepared using a dry gas and then regenerated using a hydrogen rich gas. The regeneration process is carried out at temperatures and pressures that are generally different than the operating temperatures and pressures for a typical hydrocarbon synthesis reaction.
    Type: Grant
    Filed: September 20, 2002
    Date of Patent: April 12, 2005
    Assignee: ConocoPhillips Company
    Inventors: Ajoy P. Raje, Rafael L. Espinoza, Jack E. Cnossen, Sergio R. Mohedas
  • Patent number: 6869978
    Abstract: A process is disclosed for regenerating a catalyst used in a process for synthesizing hydrocarbons. The synthesis process involves contacting a feed stream comprising hydrogen and carbon monoxide with a catalyst in a reaction zone maintained at conversion-promoting conditions effective to produce an effluent stream comprising hydrocarbons. The regeneration process involves contacting a deactivated Fischer-Tropsch catalyst with a regeneration gas under regeneration-promoting conditions that include a pressure lower than the mean Fischer-Tropsch reaction pressure, for a period of time sufficient to reactivate the Fischer-Tropsch catalyst.
    Type: Grant
    Filed: May 16, 2002
    Date of Patent: March 22, 2005
    Assignee: ConocoPhillips Company
    Inventors: Harold A. Wright, Ajoy P. Raje, Rafael L. Espinoza
  • Publication number: 20040259960
    Abstract: According to a preferred embodiment, the present invention features a bulk catalyst that includes precipitated cobalt metal. The precipitated cobalt catalyst further includes a textural promoter, a binder and optionally a Group I metal. The method of making the catalyst is optimized so as to enhance attrition resistance and improve activity. According to some embodiments, the present catalyst is made by a method that includes one or a combination of: calcination under optimized temperature conditions; exposure to an acidic solution; and addition of a binder to a suspension of a precipitate. According to some embodiments, a Fischer-Tropsch process includes contacting the present catalyst with a feed stream containing carbon monoxide and hydrogen so as to produce hydrocarbons.
    Type: Application
    Filed: December 22, 2003
    Publication date: December 23, 2004
    Applicant: ConocoPhillips Company
    Inventors: Rafael L. Espinoza, Kandaswamy Jothimurugesan, Ajoy P. Raje, Kevin L. Coy, Nithya Srinivasan
  • Publication number: 20040127585
    Abstract: Methods and apparatus for improving the efficiency and effectiveness of in situ reduction of a Fischer-Tropsch catalyst slurry. The preferred embodiments of the present invention are characterized by a system that utilizes a co-feed of carbon monoxide along with the reducing gas into a reduction vessel maintained at an elevated temperature. As the metal oxide reduces to the active Fischer-Tropsch metal, the carbon monoxide acts as a poison to hydrogenolysis and reduces the loss of liquid from the slurry and the production of methane. The carbon monoxide is generally in parts-per-million quantities and will achieve the desired results in quantities less than 5,000 ppm, preferably less than 2,000 ppm.
    Type: Application
    Filed: September 22, 2003
    Publication date: July 1, 2004
    Applicant: ConocoPhillips Company
    Inventor: Ajoy P. Raje
  • Publication number: 20040092609
    Abstract: A process for reducing C2-C9 olefin formation by recycling them to a Fischer-Tropsch hydrocarbon synthesis process and promoting recycled olefins chain growth comprises contacting a gas feed comprising a mixture of H2 and CO with a catalyst in a reactor system at conditions effective to produce a hydrocarbon product stream including C2-C9 olefins, separating a C2-C9 olefins-rich stream from the hydrocarbon product stream to form a light olefin recycle stream and recycling the light olefin recycle stream to the reactor system at a point in the reactor system where the H2:CO ratio is low relative to the H2:CO ratio in the rest of the reactor system. Depending on whether the initial H2:CO ratio is greater or less than the usage ratio of the selected catalyst, the recycled olefins can be returned to the system up- or downstream of the reactor system.
    Type: Application
    Filed: November 12, 2002
    Publication date: May 13, 2004
    Applicant: Conoco Inc.
    Inventors: Rafael L. Espinoza, Ajoy P. Raje, Doug S. Jack
  • Patent number: 6730708
    Abstract: A process is disclosed for the hydrogenation of carbon monoxide. The process involves contacting a feed stream comprising hydrogen and carbon monoxide with a catalyst system in a reaction zone maintained at conversion-promoting conditions effective to produce an effluent stream, preferably comprising hydrocarbons. In accordance with this invention the catalyst system used in the process includes at least one catalytic material for Fischer-Tropsch reactions (e.g., iron, cobalt, nickel and/or ruthenium), preferably comprising cobalt, and a support comprising aluminum borate. The catalyst system can be prepared by impregnating alumina with a boron-containing composition to form an aluminum borate support and applying a Fischer-Tropsch catalytically active material to the aluminum borate to form a supported catalyst system.
    Type: Grant
    Filed: July 3, 2001
    Date of Patent: May 4, 2004
    Assignee: ConocoPhillips Company
    Inventors: Ajoy P. Raje, Joe D. Allison, Kevin L. Coy
  • Patent number: 6727289
    Abstract: A process is disclosed for producing hydrocarbons. The process involves contacting a feed stream comprising hydrogen and carbon monoxide with a catalyst in a reaction zone maintained at conversion-promoting conditions effective to produce an effluent stream comprising hydrocarbons. In accordance with this invention, the catalyst used in the process includes at least a Fischer-Tropsch metal and boron. The Fischer-Tropsch metal preferably includes cobalt and optionally ruthenium or platinum. The catalyst may also comprise a support material selected from the group including silica, titania, titania/alumina, zirconia, alumina, aluminum fluoride, and fluorided aluminas.
    Type: Grant
    Filed: January 14, 2002
    Date of Patent: April 27, 2004
    Assignee: ConocoPhillips Company
    Inventors: Olga Ionkina, Wenchun Chao, Munirpallam A. Subramanian, Leo E. Manzer, Kamel M. Makar, Ajoy P. Raje
  • Publication number: 20040059008
    Abstract: The present invention is generally related towards the regeneration of hydrocarbon synthesis catalysts. In particular, the present invention is directed towards the regeneration of deactivated Fischer-Tropsch type catalysts using a two step process wherein the catalyst is first prepared using a dry gas and then regenerated using a hydrogen rich gas. The regeneration process is carried out at temperatures and pressures that are generally different than the operating temperatures and pressures for a typical hydrocarbon synthesis reaction.
    Type: Application
    Filed: September 20, 2002
    Publication date: March 25, 2004
    Applicant: ConocoPhillips
    Inventors: Ajoy P. Raje, Rafael L. Espinoza, Jack E. Cnossen, Sergio R. Mohedas
  • Publication number: 20040059009
    Abstract: Methods and apparatus for providing the heat required to maintain the desired temperature for catalyst regeneration. The catalyst is heated by contacting a reactant gas mixture with the catalyst in order to initiate an exothermic reaction and, once the desired temperature is achieved, exposing the catalyst to a regenerating gas. The temperature may also be maintained by heating the reactant gas mixture prior to contacting the catalyst and/or adding a liquid, which may be heated, to the catalyst. For heating a Fischer-Tropsch catalyst for regeneration, the reactant gas preferably contains less than 12 mole percent carbon monoxide and more preferably contains between 1 and 4 mole percent carbon monoxide.
    Type: Application
    Filed: September 20, 2002
    Publication date: March 25, 2004
    Applicant: ConocoPhillips
    Inventors: Barbara A. Belt, Stephen R. Landis, Sergio R. Mohedas, Ajoy P. Raje
  • Publication number: 20030083535
    Abstract: The present invention features a system and method for circulating catalyst between a reactor system and a regenerator system. A circulating catalyst system includes a reactor system, a regenerator system, and a distribution unit. The reactor system and regenerator system are adapted to exchange catalyst. The regeneration system preferably includes a regeneration zone adapted for the contact of catalyst with a regeneration gas. The system and method are adapted so that more than one regeneration gas may contact catalyst. The distribution unit is adapted to control the percentage of catalyst contacting each regeneration gas. Thus, the distribution unit is adapted to select the percentages so as to maintain the reactor system and regeneration system under a heat balance regime. Heat is preferably transferred from the regenerator system to the reactor system by an exchange of catalyst.
    Type: Application
    Filed: May 6, 2002
    Publication date: May 1, 2003
    Applicant: Conoco Inc.
    Inventors: Harold A. Wright, Todd H. Harkins, Doug S. Jack, Ajoy P. Raje
  • Publication number: 20030018088
    Abstract: A process is disclosed for the hydrogenation of carbon monoxide. The process involves contacting a feed stream comprising hydrogen and carbon monoxide with a catalyst in a reaction zone maintained at conversion-promoting conditions effective to produce an effluent stream, preferably comprising hydrocarbons. The catalyst used in the process is in the form of a sponge. The process is preferably adapted to produce hydrocarbons suitable for the production of diesel fuel. The catalyst used in the process includes at least one catalytic metal for Fischer-Tropsch reactions, preferably cobalt. Preferably the catalyst further includes at least one promoter suitable for the Fischer-Tropsch reaction, such as at least one element selected from among Groups 2-15 of the Periodic Table, preferably at lease one of chromium, iron, molybdenum, nickel, palladium, platinum, rhenium, rhodium, ruthenium, and combinations thereof.
    Type: Application
    Filed: February 28, 2002
    Publication date: January 23, 2003
    Applicant: CONOCO INC.
    Inventors: Ajoy P. Raje, Theodore A. Koch, Sourav Kumar Sengupta, Mark Jay Harper, Gloria I. Straguzzi, Hasan Dindi
  • Publication number: 20020198096
    Abstract: A process is disclosed for regenerating a catalyst used in a process for synthesizing hydrocarbons. The synthesis process involves contacting a feed stream comprising hydrogen and carbon monoxide with a catalyst in a reaction zone maintained at conversion-promoting conditions effective to produce an effluent stream comprising hydrocarbons. The regeneration process involves contacting a deactivated Fischer-Tropsch catalyst with a regeneration gas under regeneration-promoting conditions that include a pressure lower than the mean Fischer-Tropsch reaction pressure, for a period of time sufficient to reactivate the Fischer-Tropsch catalyst.
    Type: Application
    Filed: May 16, 2002
    Publication date: December 26, 2002
    Applicant: Conoco Inc.
    Inventors: Harold A. Wright, Ajoy P. Raje, Rafael L. Espinoza