Patents by Inventor Akash Garg
Akash Garg has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20250086735Abstract: Methods, systems, apparatuses, devices, and computer program products are described. A system may support a machine learning model for legal clause extraction. The machine learning model may receive, as an input, at least a portion of a document and may output an indication of one or more legal clauses included in the document. To train the model, the system may receive a document and an indication of ground truths (e.g., legal clauses) for the document. The system may determine one-to-one mappings between the legal clauses indicated by the ground truths and the legal clauses indicated by the output of the machine learning model. The system may perform a longest common substring analysis on the one-to-one mappings to determine an accuracy of the machine learning model and may iteratively update the model based on the analysis.Type: ApplicationFiled: January 30, 2024Publication date: March 13, 2025Inventors: Sundar Ram Vedula, Rajdeep Dua, Akash Singh, Amit Kumar Dash, Nimesh Gupta, Sourav Sipani, Ajay Singh, Khyati Garg, Sree Harini Soma
-
Publication number: 20250006495Abstract: A method for manufacturing integrated circuit (IC) devices includes forming first and second mask patterns with overlapping and non-overlapping features. Non-overlapping features may be removed before etching a target material layer. A third mask pattern may be formed from the overlapping features and used to etch a target material layer. The third mask pattern may be employed to make regular arrays of substantially rectangular structures. An IC device may include an IC die, an array of structures on a layer of the IC die, and multiple groups of parallel stripes of indentations or depressions in the layer. The structures may each include a transistor and a capacitor.Type: ApplicationFiled: June 29, 2023Publication date: January 2, 2025Applicant: Intel CorporationInventors: Allen Gardiner, Nikhil Mehta, Shu Zhou, Travis LaJoie, Shem Ogadhoh, Akash Garg, Van Le, Christopher Pelto, Bernhard Sell
-
Publication number: 20240367369Abstract: A method of forming a three-dimensional structure using droplet-based freeform printing is provided. The method includes depositing a structural material through one or more nozzles onto a surface of a substrate by droplet-based freeform printing, such as inkjet printing, to form one or more three-dimensional structures including a smooth surface and one or more cross-sectional dimensions. The structural material undergoes a liquid-to-solid transition after deposition of the structural material, and the one or more cross-sectional dimensions are controlled by a droplet ejection frequency.Type: ApplicationFiled: August 25, 2022Publication date: November 7, 2024Inventors: Akash Garg, O. Burak Ozdoganlar, Philip R. LeDuc, Saigopalakrishna Saileelaprasad Yerneni
-
Patent number: 11991873Abstract: Embodiments herein describe techniques for a semiconductor device including a substrate, a first inter-level dielectric (ILD) layer above the substrate, and a second ILD layer above the first ILD layer. A first capacitor and a second capacitor are formed within the first ILD layer and the second ILD layer. A first top plate of the first capacitor and a second top plate of the second capacitor are formed at a boundary between the first ILD layer and the second ILD layer. The first capacitor and the second capacitor are separated by a dielectric area in the first ILD layer. The dielectric area includes a first dielectric area that is coplanar with the first top plate or the second top plate, and a second dielectric area above the first dielectric area and to separate the first top plate and the second top plate. Other embodiments may be described and/or claimed.Type: GrantFiled: February 14, 2023Date of Patent: May 21, 2024Assignee: Intel CorporationInventors: Travis W. Lajoie, Abhishek A. Sharma, Van H. Le, Chieh-Jen Ku, Pei-Hua Wang, Jack T. Kavalieros, Bernhard Sell, Tahir Ghani, Gregory George, Akash Garg, Julie Rollins, Allen B. Gardiner, Shem Ogadhoh, Juan G. Alzate Vinasco, Umut Arslan, Fatih Hamzaoglu, Nikhil Mehta, Yu-Wen Huang, Shu Zhou
-
Patent number: 11916770Abstract: This disclosure describes methods to process timing information of flows in a network. One or more processors determine a latency associated with each of one or more packets of a flow passing through a device. The one or more processors determine that the latency is greater than a baseline latency, and the one or more processors provide a message indicating at least the flow and that the latency is greater than the baseline latency.Type: GrantFiled: October 20, 2020Date of Patent: February 27, 2024Assignee: Cisco Technology, Inc.Inventors: Padmanab Pathikonda, Rishi Chhibber, Roshan Lal, Lakshmi Priya Sarma, Vinay Narayana Rai, Akash Garg
-
Publication number: 20240049450Abstract: Embodiments herein describe techniques for a semiconductor device including a substrate. A first capacitor includes a first top plate and a first bottom plate above the substrate. The first top plate is coupled to a first metal electrode within an inter-level dielectric (ILD) layer to access the first capacitor. A second capacitor includes a second top plate and a second bottom plate, where the second top plate is coupled to a second metal electrode within the ILD layer to access the second capacitor. The second metal electrode is disjoint from the first metal electrode. The first capacitor is accessed through the first metal electrode without accessing the second capacitor through the second metal electrode. Other embodiments may be described and/or claimed.Type: ApplicationFiled: October 17, 2023Publication date: February 8, 2024Inventors: Travis W. LAJOIE, Abhishek A. SHARMA, Van H. LE, Chieh-Jen KU, Pei-Hua WANG, Jack T. KAVALIEROS, Bernhard SELL, Tahir GHANI, Gregory GEORGE, Akash GARG, Allen B. GARDINER, Shem OGADHOH, Juan G. ALZATE VINASCO, Umut ARSLAN, Fatih HAMZAOGLU, Nikhil MEHTA, Jared STOEGER, Yu-Wen HUANG, Shu ZHOU
-
Patent number: 11832438Abstract: Embodiments herein describe techniques for a semiconductor device including a substrate. A first capacitor includes a first top plate and a first bottom plate above the substrate. The first top plate is coupled to a first metal electrode within an inter-level dielectric (ILD) layer to access the first capacitor. A second capacitor includes a second top plate and a second bottom plate, where the second top plate is coupled to a second metal electrode within the ILD layer to access the second capacitor. The second metal electrode is disjoint from the first metal electrode. The first capacitor is accessed through the first metal electrode without accessing the second capacitor through the second metal electrode. Other embodiments may be described and/or claimed.Type: GrantFiled: June 28, 2019Date of Patent: November 28, 2023Assignee: Intel CorporationInventors: Travis W. Lajoie, Abhishek A. Sharma, Van H. Le, Chieh-Jen Ku, Pei-Hua Wang, Jack T. Kavalieros, Bernhard Sell, Tahir Ghani, Gregory George, Akash Garg, Allen B. Gardiner, Shem Ogadhoh, Juan G. Alzate Vinasco, Umut Arslan, Fatih Hamzaoglu, Nikhil Mehta, Jared Stoeger, Yu-Wen Huang, Shu Zhou
-
Publication number: 20230369503Abstract: Techniques are provided for making asymmetric contacts to improve the performance of thin film transistors (TFT) structures. The asymmetry may be with respect to the area of contact interface with the semiconductor region and/or the depth to which the contacts extend into the semiconductor region. According to some embodiments, the TFT structures are used in memory structures arranged in a two-dimensional array within one or more interconnect layers and stacked in a vertical direction such that multiple tiers of memory structure arrays are formed within the interconnect region. Any of the given TFT structures may include asymmetric contacts, such as two contacts that each have a different contact area to a semiconductor region, and/or that extend to different depths within the semiconductor region. The degree of asymmetry may be tuned during fabrication to modulate certain transistor parameters such as, for example, leakage, capacitance, gate control, channel length, or contact resistance.Type: ApplicationFiled: May 12, 2022Publication date: November 16, 2023Applicant: Intel CorporationInventors: Cheng Tan, Van H. Le, Akash Garg, Shokir A. Pardaev, Timothy Jen, Abhishek Anil Sharma, Thiruselvam Ponnusamy, Moira C. Vyner, Caleb Barrett, Forough Mahmoudabadi, Albert B. Chen, Travis W. Lajoie, Christopher M. Pelto
-
Publication number: 20230200043Abstract: Embodiments herein describe techniques for a semiconductor device including a substrate, a first inter-level dielectric (ILD) layer above the substrate, and a second ILD layer above the first ILD layer. A first capacitor and a second capacitor are formed within the first ILD layer and the second ILD layer. A first top plate of the first capacitor and a second top plate of the second capacitor are formed at a boundary between the first ILD layer and the second ILD layer. The first capacitor and the second capacitor are separated by a dielectric area in the first ILD layer. The dielectric area includes a first dielectric area that is coplanar with the first top plate or the second top plate, and a second dielectric area above the first dielectric area and to separate the first top plate and the second top plate. Other embodiments may be described and/or claimed.Type: ApplicationFiled: February 14, 2023Publication date: June 22, 2023Inventors: Travis W. LAJOIE, Abhishek A. SHARMA, Van H. LE, Chieh-Jen KU, Pei-Hua WANG, Jack T. KAVALIEROS, Bernhard SELL, Tahir GHANI, Gregory GEORGE, Akash GARG, Julie ROLLINS, Allen B. GARDINER, Shem OGADHOH, Juan G. ALZATE VINASCO, Umut ARSLAN, Fatih HAMZAOGLU, Nikhil MEHTA, Yu-Wen HUANG, Shu ZHOU
-
Patent number: 11652047Abstract: Embodiments herein describe techniques for a semiconductor device having an interconnect structure including an inter-level dielectric (ILD) layer between a first layer and a second layer of the interconnect structure. The interconnect structure further includes a separation layer within the ILD layer. The ILD layer includes a first area with a first height to extend from a first surface of the ILD layer to a second surface of the ILD layer. The ILD layer further includes a second area with a second height to extend from the first surface of the ILD layer to a surface of the separation layer, where the first height is larger than the second height. Other embodiments may be described and/or claimed.Type: GrantFiled: June 28, 2019Date of Patent: May 16, 2023Assignee: Intel CorporationInventors: Travis W. Lajoie, Abhishek A. Sharma, Van H. Le, Chieh-Jen Ku, Pei-Hua Wang, Jack T. Kavalieros, Bernhard Sell, Tahir Ghani, Gregory George, Akash Garg, Julie Rollins, Allen B. Gardiner, Shem Ogadhoh, Juan G. Alzate Vinasco, Umut Arslan, Fatih Hamzaoglu, Nikhil Mehta, Ting Chen, Vinaykumar V. Hadagali
-
Patent number: 11610894Abstract: Embodiments herein describe techniques for a semiconductor device including a substrate, a first inter-level dielectric (ILD) layer above the substrate, and a second ILD layer above the first ILD layer. A first capacitor and a second capacitor are formed within the first ILD layer and the second ILD layer. A first top plate of the first capacitor and a second top plate of the second capacitor are formed at a boundary between the first ILD layer and the second ILD layer. The first capacitor and the second capacitor are separated by a dielectric area in the first ILD layer. The dielectric area includes a first dielectric area that is coplanar with the first top plate or the second top plate, and a second dielectric area above the first dielectric area and to separate the first top plate and the second top plate. Other embodiments may be described and/or claimed.Type: GrantFiled: June 28, 2019Date of Patent: March 21, 2023Assignee: Intel CorporationInventors: Travis W. Lajoie, Abhishek A. Sharma, Van H. Le, Chieh-Jen Ku, Pei-Hua Wang, Jack T. Kavalieros, Bernhard Sell, Tahir Ghani, Gregory George, Akash Garg, Julie Rollins, Allen B. Gardiner, Shem Ogadhoh, Juan G. Alzate Vinasco, Umut Arslan, Fatih Hamzaoglu, Nikhil Mehta, Yu-Wen Huang, Shu Zhou
-
Method of contact patterning of thin film transistors for embedded DRAM using a multi-layer hardmask
Patent number: 11563107Abstract: An integrated circuit structure comprises one or more backend-of-line (BEOL) interconnects formed over a first ILD layer. An etch stop layer is over the one or more BEOL interconnects, the etch stop layer having a plurality of vias that are in contact with the one or more BEOL interconnects. An array of BEOL thin-film-transistors (TFTs) is over the etch stop layer, wherein adjacent ones of the BEOL TFTs are separated by isolation trench regions. The TFTs are aligned with at least one of the plurality of vias to connect to the one or more BEOL interconnects, wherein each of the BEOL TFTs comprise a bottom gate electrode, a gate dielectric layer over the bottom gate electrode, and an oxide-based semiconductor channel layer over the bottom gate electrode having source and drain regions therein. Contacts are formed over the source and drain regions of each of BEOL TFTs, wherein the contacts have a critical dimension of 35 nm or less, and wherein the BEOL TFTs have an absence of diluted hydro-fluoride (DHF).Type: GrantFiled: March 22, 2019Date of Patent: January 24, 2023Assignee: Intel CorporationInventors: Chieh-Jen Ku, Bernhard Sell, Pei-Hua Wang, Nikhil Mehta, Shu Zhou, Jared Stoeger, Allen B. Gardiner, Akash Garg, Shem Ogadhoh, Vinaykumar Hadagali, Travis W. Lajoie -
Publication number: 20220124017Abstract: This disclosure describes methods to process timing information of flows in a network. One or more processors determine a latency associated with each of one or more packets of a flow passing through a device. The one or more processors determine that the latency is greater than a baseline latency, and the one or more processors provide a message indicating at least the flow and that the latency is greater than the baseline latency.Type: ApplicationFiled: October 20, 2020Publication date: April 21, 2022Inventors: Padmanab Pathikonda, Rishi Chhibber, Roshan Lal, Lakshmi Priya Sarma, Vinay Narayana Rai, Akash Garg
-
Patent number: 11303623Abstract: A system and method including: receiving an authorization request originating from an authorization module of an application executing on a client device, where the authorization request includes an identifier identifying the client device; causing transmission, based on the identifier, of a verification message to the client device, where the verification message includes a verification code; receiving a confirmation of the verification code from the authorization module of the application executing on the client device; authenticating the application based on the receiving the confirmation of the verification code; determining that the client device identified by the identifier corresponds to a user account including secure user data associated with a user; and transmitting a unique token verifying that the application is authorized to sign into the user account, where: the unique token uniquely identifies the user account to the application, and the secure user data is not shared with the application.Type: GrantFiled: March 2, 2020Date of Patent: April 12, 2022Assignee: Twitter, Inc.Inventors: Michael Ducker, Sean Cook, Jeffrey Seibert, Jr., Alex Roetter, Kevin Weil, Akash Garg, Jeremy Gordon
-
Publication number: 20200411520Abstract: Embodiments herein describe techniques for a semiconductor device including a substrate, a first inter-level dielectric (ILD) layer above the substrate, and a second ILD layer above the first ILD layer. A first capacitor and a second capacitor are formed within the first ILD layer and the second ILD layer. A first top plate of the first capacitor and a second top plate of the second capacitor are formed at a boundary between the first ILD layer and the second ILD layer. The first capacitor and the second capacitor are separated by a dielectric area in the first ILD layer. The dielectric area includes a first dielectric area that is coplanar with the first top plate or the second top plate, and a second dielectric area above the first dielectric area and to separate the first top plate and the second top plate. Other embodiments may be described and/or claimed.Type: ApplicationFiled: June 28, 2019Publication date: December 31, 2020Inventors: Travis W. LAJOIE, Abhishek A. SHARMA, Van H. LE, Chieh-Jen KU, Pei-Hua WANG, Jack T. KAVALIEROS, Bernhard SELL, Tahir GHANI, Gregory GEORGE, Akash GARG, Julie ROLLINS, Allen B. GARDINER, Shem OGADHOH, Juan G. ALZATE VINASCO, Umut ARSLAN, Fatih HAMZAOGLU, Nikhil MEHTA, Yu-Wen HUANG, Shu ZHOU
-
Publication number: 20200411525Abstract: Embodiments herein describe techniques for a semiconductor device including a substrate. A first capacitor includes a first top plate and a first bottom plate above the substrate. The first top plate is coupled to a first metal electrode within an inter-level dielectric (ILD) layer to access the first capacitor. A second capacitor includes a second top plate and a second bottom plate, where the second top plate is coupled to a second metal electrode within the ILD layer to access the second capacitor. The second metal electrode is disjoint from the first metal electrode. The first capacitor is accessed through the first metal electrode without accessing the second capacitor through the second metal electrode. Other embodiments may be described and/or claimed.Type: ApplicationFiled: June 28, 2019Publication date: December 31, 2020Inventors: Travis W. LAJOIE, Abhishek A. SHARMA, Van H. LE, Chieh-Jen KU, Pei-Hua WANG, Jack T. KAVALIEROS, Bernhard SELL, Tahir GHANI, Gregory GEORGE, Akash GARG, Allen B. GARDINER, Shem OGADHOH, Juan G. ALZATE VINASCO, Umut ARSLAN, Fatih HAMZAOGLU, Nikhil MEHTA, Jared STOEGER, Yu-Wen HUANG, Shu ZHOU
-
Publication number: 20200411426Abstract: Embodiments herein describe techniques for a semiconductor device having an interconnect structure including an inter-level dielectric (ILD) layer between a first layer and a second layer of the interconnect structure. The interconnect structure further includes a separation layer within the ILD layer. The ILD layer includes a first area with a first height to extend from a first surface of the ILD layer to a second surface of the ILD layer. The ILD layer further includes a second area with a second height to extend from the first surface of the ILD layer to a surface of the separation layer, where the first height is larger than the second height. Other embodiments may be described and/or claimed.Type: ApplicationFiled: June 28, 2019Publication date: December 31, 2020Inventors: Travis W. LAJOIE, Abhishek A. SHARMA, Van H. LE, Chieh-Jen KU, Pei-Hua WANG, Jack T. KAVALIEROS, Bernhard SELL, Tahir GHANI, Gregory GEORGE, Akash GARG, Julie ROLLINS, Allen B. GARDINER, Shem OGADHOH, Juan G. ALZATE VINASCO, Umut ARSLAN, Fatih HAMZAOGLU, Nikhil MEHTA, Ting CHEN, Vinaykumar V. HADAGALI
-
Publication number: 20200411635Abstract: Embodiments herein describe techniques for a semiconductor device including a substrate, a first inter-level dielectric (ILD) layer above the substrate, and a second ILD layer above the first ILD layer. The semiconductor device further includes a capacitor having a bottom plate above the substrate, a capacitor dielectric layer adjacent to and above the bottom plate, and a top plate adjacent to and above the capacitor dielectric layer. The bottom plate, the capacitor dielectric layer, and the top plate are within the first ILD layer or the second ILD layer. Furthermore, an air gap is formed next to the top plate and below a top surface of the second ILD layer. Other embodiments may be described and/or claimed.Type: ApplicationFiled: June 28, 2019Publication date: December 31, 2020Inventors: Travis W. LAJOIE, Abhishek A. SHARMA, Van H. LE, Chieh-Jen KU, Pei-Hua WANG, Jack T. KAVALIEROS, Bernhard SELL, Tahir GHANI, Gregory GEORGE, Akash GARG, Allen B. GARDINER, Shem OGADHOH, Juan G. ALZATE VINASCO, Umut ARSLAN, Fatih HAMZAOGLU, Nikhil MEHTA, Yu-Wen HUANG, Shu ZHOU
-
Publication number: 20200304483Abstract: A system and method including: receiving an authorization request originating from an authorization module of an application executing on a client device, where the authorization request includes an identifier identifying the client device; causing transmission, based on the identifier, of a verification message to the client device, where the verification message includes a verification code; receiving a confirmation of the verification code from the authorization module of the application executing on the client device; authenticating the application based on the receiving the confirmation of the verification code; determining that the client device identified by the identifier corresponds to a user account including secure user data associated with a user; and transmitting a unique token verifying that the application is authorized to sign into the user account, where: the unique token uniquely identifies the user account to the application, and the secure user data is not shared with the application.Type: ApplicationFiled: March 2, 2020Publication date: September 24, 2020Inventors: Michael Ducker, Sean Cook, Jeffrey Seibert, JR., Alex Roetter, Kevin Weil, Akash Garg, Jeremy Gordon
-
METHOD OF CONTACT PATTERNING OF THIN FILM TRANSISTORS FOR EMBEDDED DRAM USING A MULTI-LAYER HARDMASK
Publication number: 20200303520Abstract: An integrated circuit structure comprises one or more backend-of-line (BEOL) interconnects formed over a first ILD layer. An etch stop layer is over the one or more BEOL interconnects, the etch stop layer having a plurality of vias that are in contact with the one or more BEOL interconnects. An array of BEOL thin-film-transistors (TFTs) is over the etch stop layer, wherein adjacent ones of the BEOL TFTs are separated by isolation trench regions. The TFTs are aligned with at least one of the plurality of vias to connect to the one or more BEOL interconnects, wherein each of the BEOL TFTs comprise a bottom gate electrode, a gate dielectric layer over the bottom gate electrode, and an oxide-based semiconductor channel layer over the bottom gate electrode having source and drain regions therein. Contacts are formed over the source and drain regions of each of BEOL TFTs, wherein the contacts have a critical dimension of 35 nm or less, and wherein the BEOL TFTs have an absence of diluted hydro-fluoride (DHF).Type: ApplicationFiled: March 22, 2019Publication date: September 24, 2020Inventors: Chieh-Jen KU, Bernhard SELL, Pei-Hua WANG, Nikhil MEHTA, Shu ZHOU, Jared STOEGER, Allen B. GARDINER, Akash GARG, Shem OGADHOH, Vinaykumar HADAGALI, Travis W. LAJOIE