Patents by Inventor Akash Rupela

Akash Rupela has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11816696
    Abstract: Machine-learning based multi-step engagement strategy modification is described. Rather than rely heavily on human involvement to manage content delivery over the course of a campaign, the described learning-based engagement system modifies a multi-step engagement strategy, originally created by an engagement-system user, by leveraging machine-learning models. In particular, these leveraged machine-learning models are trained using data describing user interactions with delivered content as those interactions occur over the course of the campaign. Initially, the learning-based engagement system obtains a multi-step engagement strategy created by an engagement-system user. As the multi-step engagement strategy is deployed, the learning-based engagement system randomly adjusts aspects of the sequence of deliveries for some users.
    Type: Grant
    Filed: June 23, 2021
    Date of Patent: November 14, 2023
    Assignee: Adobe Inc.
    Inventors: Pankhri Singhai, Sundeep Parsa, Piyush Gupta, Nupur Kumari, Nikaash Puri, Mayank Singh, Eshita Shah, Balaji Krishnamurthy, Akash Rupela
  • Patent number: 11631205
    Abstract: The present disclosure relates to systems, methods, and non-transitory computer-readable media that generate interactive visual shape representation of digital datasets. For example, the disclosed systems can generate an augmented nearest neighbor network graph from a sampled subset of digital data points using a nearest neighbor model and witness complex model. The disclosed system can further generate a landmark network graph based on the augmented nearest neighbor network graph utilizing a plurality of random walks. The disclosed systems can also generate a loop-augmented spanning network graph based on a partition of the landmark network graph by adding community edges between communities of landmark groups based on modularity and to complete community loops. Based on the loop-augmented spanning network graph, the disclosed systems can generate an interactive visual shape representation for display on a client device.
    Type: Grant
    Filed: March 30, 2022
    Date of Patent: April 18, 2023
    Assignee: Adobe Inc.
    Inventors: Nupur Kumari, Piyush Gupta, Akash Rupela, Siddarth R, Balaji Krishnamurthy
  • Publication number: 20220230369
    Abstract: The present disclosure relates to systems, methods, and non-transitory computer-readable media that generate interactive visual shape representation of digital datasets. For example, the disclosed systems can generate an augmented nearest neighbor network graph from a sampled subset of digital data points using a nearest neighbor model and witness complex model. The disclosed system can further generate a landmark network graph based on the augmented nearest neighbor network graph utilizing a plurality of random walks. The disclosed systems can also generate a loop-augmented spanning network graph based on a partition of the landmark network graph by adding community edges between communities of landmark groups based on modularity and to complete community loops. Based on the loop-augmented spanning network graph, the disclosed systems can generate an interactive visual shape representation for display on a client device.
    Type: Application
    Filed: March 30, 2022
    Publication date: July 21, 2022
    Inventors: Nupur Kumari, Piyush Gupta, Akash Rupela, Siddarth R, Balaji Krishnamurthy
  • Patent number: 11295491
    Abstract: The present disclosure relates to systems, methods, and non-transitory computer-readable media that generate interactive visual shape representation of digital datasets. For example, the disclosed systems can generate an augmented nearest neighbor network graph from a sampled subset of digital data points using a nearest neighbor model and witness complex model. The disclosed system can further generate a landmark network graph based on the augmented nearest neighbor network graph utilizing a plurality of random walks. The disclosed systems can also generate a loop-augmented spanning network graph based on a partition of the landmark network graph by adding community edges between communities of landmark groups based on modularity and to complete community loops. Based on the loop-augmented spanning network graph, the disclosed systems can generate an interactive visual shape representation for display on a client device.
    Type: Grant
    Filed: April 16, 2020
    Date of Patent: April 5, 2022
    Assignee: Adobe Inc.
    Inventors: Nupur Kumari, Piyush Gupta, Akash Rupela, Siddarth R, Balaji Krishnamurthy
  • Publication number: 20210349915
    Abstract: This disclosure relates to methods, non-transitory computer readable media, and systems that generate and render a varied-scale-topological construct for a multidimensional dataset to visually represent portions of the multidimensional dataset at different topological scales. In certain implementations, for example, the disclosed systems generate and combine (i) an initial topological construct for a multidimensional dataset at one scale and (ii) a local topological construct for a subset of the multidimensional dataset at another scale to form a varied-scale-topological construct. To identify a region from an initial topological construct to vary in scale, the disclosed systems can determine the relative densities of subsets of multidimensional data corresponding to regions of the initial topological construct and select one or more such regions to change in scale.
    Type: Application
    Filed: July 22, 2021
    Publication date: November 11, 2021
    Inventors: Akash Rupela, Piyush Gupta, Nupur Kumari, Bishal Deb, Balaji Krishnamurthy, Ankita Sarkar
  • Publication number: 20210327108
    Abstract: The present disclosure relates to systems, methods, and non-transitory computer-readable media that generate interactive visual shape representation of digital datasets. For example, the disclosed systems can generate an augmented nearest neighbor network graph from a sampled subset of digital data points using a nearest neighbor model and witness complex model. The disclosed system can further generate a landmark network graph based on the augmented nearest neighbor network graph utilizing a plurality of random walks. The disclosed systems can also generate a loop-augmented spanning network graph based on a partition of the landmark network graph by adding community edges between communities of landmark groups based on modularity and to complete community loops. Based on the loop-augmented spanning network graph, the disclosed systems can generate an interactive visual shape representation for display on a client device.
    Type: Application
    Filed: April 16, 2020
    Publication date: October 21, 2021
    Inventors: Nupur Kumari, Piyush Gupta, Akash Rupela, Siddarth R, Balaji Krishnamurthy
  • Publication number: 20210319473
    Abstract: Machine-learning based multi-step engagement strategy modification is described. Rather than rely heavily on human involvement to manage content delivery over the course of a campaign, the described learning-based engagement system modifies a multi-step engagement strategy, originally created by an engagement-system user, by leveraging machine-learning models. In particular, these leveraged machine-learning models are trained using data describing user interactions with delivered content as those interactions occur over the course of the campaign. Initially, the learning-based engagement system obtains a multi-step engagement strategy created by an engagement-system user. As the multi-step engagement strategy is deployed, the learning-based engagement system randomly adjusts aspects of the sequence of deliveries for some users.
    Type: Application
    Filed: June 23, 2021
    Publication date: October 14, 2021
    Applicant: Adobe Inc.
    Inventors: Pankhri Singhai, Sundeep Parsa, Piyush Gupta, Nupur Kumari, Nikaash Puri, Mayank Singh, Eshita Shah, Balaji Krishnamurthy, Akash Rupela
  • Patent number: 11109084
    Abstract: Machine-learning based multi-step engagement strategy generation and visualization is described. Rather than rely heavily on human involvement to create delivery strategies, the described learning-based engagement system generates multi-step engagement strategies by leveraging machine-learning models trained using data describing historical user interactions with content delivered in connection with historical campaigns. Initially, the learning-based engagement system obtains data describing an entry condition and an exit condition for a campaign. Based on the entry and exit condition, the learning-based engagement system utilizes the machine-learning models to generate a multi-step engagement strategy, which describes a sequence of content deliveries that are to be served to a particular client device user (or segment of client device users).
    Type: Grant
    Filed: November 25, 2019
    Date of Patent: August 31, 2021
    Assignee: Adobe Inc.
    Inventors: Pankhri Singhai, Sundeep Parsa, Piyush Gupta, Nikaash Puri, Eshita Shah, Balaji Krishnamurthy, Nupur Kumari, Mayank Singh, Akash Rupela
  • Patent number: 11107115
    Abstract: Machine-learning based multi-step engagement strategy modification is described. Rather than rely heavily on human involvement to manage content delivery over the course of a campaign, the described learning-based engagement system modifies a multi-step engagement strategy, originally created by an engagement-system user, by leveraging machine-learning models. In particular, these leveraged machine-learning models are trained using data describing user interactions with delivered content as those interactions occur over the course of the campaign. Initially, the learning-based engagement system obtains a multi-step engagement strategy created by an engagement-system user. As the multi-step engagement strategy is deployed, the learning-based engagement system randomly adjusts aspects of the sequence of deliveries for some users.
    Type: Grant
    Filed: August 7, 2018
    Date of Patent: August 31, 2021
    Assignee: Adobe Inc.
    Inventors: Pankhri Singhai, Sundeep Parsa, Piyush Gupta, Nupur Kumari, Nikaash Puri, Mayank Singh, Eshita Shah, Balaji Krishnamurthy, Akash Rupela
  • Patent number: 11100127
    Abstract: This disclosure relates to methods, non-transitory computer readable media, and systems that generate and render a varied-scale-topological construct for a multidimensional dataset to visually represent portions of the multidimensional dataset at different topological scales. In certain implementations, for example, the disclosed systems generate and combine (i) an initial topological construct for a multidimensional dataset at one scale and (ii) a local topological construct for a subset of the multidimensional dataset at another scale to form a varied-scale-topological construct. To identify a region from an initial topological construct to vary in scale, the disclosed systems can determine the relative densities of subsets of multidimensional data corresponding to regions of the initial topological construct and select one or more such regions to change in scale.
    Type: Grant
    Filed: March 28, 2019
    Date of Patent: August 24, 2021
    Assignee: Adobe Inc.
    Inventors: Akash Rupela, Piyush Gupta, Nupur Kumari, Bishal Deb, Balaji Krishnamurthy, Ankita Sarkar
  • Patent number: 11073965
    Abstract: In some embodiments, a configuration management application accesses configuration data for a multi-target website. The configuration management application provides the user interface including a timeline area and a page display area. The timeline area is configured to display timeline entries corresponding to configurations of the multi-target website. Based on a selection of a timeline entry, the page display area is configured to display a webpage configuration corresponding to the selected timeline entry. In addition, the page display area is configured to display graphical annotations indicating interaction metrics for the configured page regions. In some cases, the timeline entries, configurations, and interaction metrics are determined based on a selection of a target segment for the multi-target website.
    Type: Grant
    Filed: November 16, 2018
    Date of Patent: July 27, 2021
    Assignee: ADOBE INC.
    Inventors: Harpreet Singh, Balaji Krishnamurthy, Akash Rupela
  • Publication number: 20200311100
    Abstract: This disclosure relates to methods, non-transitory computer readable media, and systems that generate and render a varied-scale-topological construct for a multidimensional dataset to visually represent portions of the multidimensional dataset at different topological scales. In certain implementations, for example, the disclosed systems generate and combine (i) an initial topological construct for a multidimensional dataset at one scale and (ii) a local topological construct for a subset of the multidimensional dataset at another scale to form a varied-scale-topological construct. To identify a region from an initial topological construct to vary in scale, the disclosed systems can determine the relative densities of subsets of multidimensional data corresponding to regions of the initial topological construct and select one or more such regions to change in scale.
    Type: Application
    Filed: March 28, 2019
    Publication date: October 1, 2020
    Inventors: Akash Rupela, Piyush Gupta, Nupur Kumari, Bishal Deb, Balaji Krishnamurthy, Ankita Sarkar
  • Patent number: 10726325
    Abstract: Disclosed systems and methods generate user-session representation vectors from data generated by user interactions with online services. A transformation application executing on a computing device receives interaction data, which is generated by user devices interacting with an online service. The transformation application separates the interaction data into session datasets. The transformation involves normalizing the session datasets by modifying the rows within each session dataset by removing event identifiers and time stamps. The application transforms each normalized session dataset into a respective user-session representation vector. The application outputs the user-session representation vectors.
    Type: Grant
    Filed: April 13, 2017
    Date of Patent: July 28, 2020
    Assignee: Adobe Inc.
    Inventors: Balaji Krishnamurthy, Piyush Gupta, Nupur Kumari, Akash Rupela
  • Publication number: 20200159371
    Abstract: In some embodiments, a configuration management application accesses configuration data for a multi-target website. The configuration management application provides the user interface including a timeline area and a page display area. The timeline area is configured to display timeline entries corresponding to configurations of the multi-target website. Based on a selection of a timeline entry, the page display area is configured to display a webpage configuration corresponding to the selected timeline entry. In addition, the page display area is configured to display graphical annotations indicating interaction metrics for the configured page regions. In some cases, the timeline entries, configurations, and interaction metrics are determined based on a selection of a target segment for the multi-target website.
    Type: Application
    Filed: November 16, 2018
    Publication date: May 21, 2020
    Inventors: Harpreet Singh, Balaji Krishnamurthy, Akash Rupela
  • Patent number: 10609434
    Abstract: Machine-learning based multi-step engagement strategy generation and visualization is described. Rather than rely heavily on human involvement to create delivery strategies, the described learning-based engagement system generates multi-step engagement strategies by leveraging machine-learning models trained using data describing historical user interactions with content delivered in connection with historical campaigns. Initially, the learning-based engagement system obtains data describing an entry condition and an exit condition for a campaign. Based on the entry and exit condition, the learning-based engagement system utilizes the machine-learning models to generate a multi-step engagement strategy, which describes a sequence of content deliveries that are to be served to a particular client device user (or segment of client device users).
    Type: Grant
    Filed: August 7, 2018
    Date of Patent: March 31, 2020
    Assignee: Adobe Inc.
    Inventors: Pankhri Singhai, Sundeep Parsa, Piyush Gupta, Nikaash Puri, Eshita Shah, Balaji Krishnamurthy, Nupur Kumari, Mayank Singh, Akash Rupela
  • Publication number: 20200092593
    Abstract: Machine-learning based multi-step engagement strategy generation and visualization is described. Rather than rely heavily on human involvement to create delivery strategies, the described learning-based engagement system generates multi-step engagement strategies by leveraging machine-learning models trained using data describing historical user interactions with content delivered in connection with historical campaigns. Initially, the learning-based engagement system obtains data describing an entry condition and an exit condition for a campaign. Based on the entry and exit condition, the learning-based engagement system utilizes the machine-learning models to generate a multi-step engagement strategy, which describes a sequence of content deliveries that are to be served to a particular client device user (or segment of client device users).
    Type: Application
    Filed: November 25, 2019
    Publication date: March 19, 2020
    Applicant: Adobe Inc.
    Inventors: Pankhri Singhai, Sundeep Parsa, Piyush Gupta, Nikaash Puri, Eshita Shah, Balaji Krishnamurthy, Nupur Kumari, Mayank Singh, Akash Rupela
  • Publication number: 20200053403
    Abstract: Machine-learning based multi-step engagement strategy generation and visualization is described. Rather than rely heavily on human involvement to create delivery strategies, the described learning-based engagement system generates multi-step engagement strategies by leveraging machine-learning models trained using data describing historical user interactions with content delivered in connection with historical campaigns. Initially, the learning-based engagement system obtains data describing an entry condition and an exit condition for a campaign. Based on the entry and exit condition, the learning-based engagement system utilizes the machine-learning models to generate a multi-step engagement strategy, which describes a sequence of content deliveries that are to be served to a particular client device user (or segment of client device users).
    Type: Application
    Filed: August 7, 2018
    Publication date: February 13, 2020
    Applicant: Adobe Inc.
    Inventors: Pankhri Singhai, Sundeep Parsa, Piyush Gupta, Nikaash Puri, Eshita Shah, Balaji Krishnamurthy, Nupur Kumari, Mayank Singh, Akash Rupela
  • Publication number: 20200051118
    Abstract: Machine-learning based multi-step engagement strategy modification is described. Rather than rely heavily on human involvement to manage content delivery over the course of a campaign, the described learning-based engagement system modifies a multi-step engagement strategy, originally created by an engagement-system user, by leveraging machine-learning models. In particular, these leveraged machine-learning models are trained using data describing user interactions with delivered content as those interactions occur over the course of the campaign. Initially, the learning-based engagement system obtains a multi-step engagement strategy created by an engagement-system user. As the multi-step engagement strategy is deployed, the learning-based engagement system randomly adjusts aspects of the sequence of deliveries for some users.
    Type: Application
    Filed: August 7, 2018
    Publication date: February 13, 2020
    Applicant: Adobe Inc.
    Inventors: Pankhri Singhai, Sundeep Parsa, Piyush Gupta, Nupur Kumari, Nikaash Puri, Mayank Singh, Eshita Shah, Balaji Krishnamurthy, Akash Rupela
  • Publication number: 20180300609
    Abstract: Disclosed systems and methods generate user-session representation vectors from data generated by user interactions with online services. A transformation application executing on a computing device receives interaction data, which is generated by user devices interacting with an online service. The transformation application separates the interaction data into session datasets. The transformation involves normalizing the session datasets by modifying the rows within each session dataset by removing event identifiers and time stamps. The application transforms each normalized session dataset into a respective user-session representation vector. The application outputs the user-session representation vectors.
    Type: Application
    Filed: April 13, 2017
    Publication date: October 18, 2018
    Inventors: Balaji Krishnamurthy, Piyush Gupta, Nupur Kumari, Akash Rupela