Patents by Inventor Akhil Garlapati
Akhil Garlapati has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 12292716Abstract: A time-to-digital converter (TDC) uses voltage as a representation of time offset. A voltage change is induced over a time period from a start signal to a stop signal. The final voltage is then measured, and the voltage measurement is mapped to a time value representing the time between the start signal and the stop signal. The voltage change can be increasing or decreasing, e.g., by charging or discharging a capacitive circuit between the start signal and the stop signal. The voltage can be measured using an analog-to-digital converter (ADC) or other voltage measurement circuit. The voltage measurement can be mapped to the time value in any manner, such as, for example, using a transfer function or using a mapping table that provides a time value for each possible voltage measurement value.Type: GrantFiled: November 6, 2023Date of Patent: May 6, 2025Assignee: Anokiwave, Inc.Inventors: Kartik Sridharan, Jun Li, Eythan Familier, Gaurav Menon, Shamsun Nahar, Akhil Garlapati, Scott Humphreys, Antonio Geremia
-
Publication number: 20250112638Abstract: Digital post-processing of time-to-digital converter (TDC) output data can be used to map each TDC code to the ideal one, but this requires knowing the TDC input-output mapping. Therefore, a calibration system and method are provided for characterizing operation of a TDC to compensate for non-idealities. Input signals having a known time difference are provided to the TDC, and a mapping between the TDC output and the known time difference is stored in a mapping table. With the described method, it is possible to input an input ramp of very low slope to construct this mapping to a desired resolution during a background calibration procedure. This characterizing and mapping can be performed across a range of input signals having different known time differences. After calibration, a mapping table can be used by a mapping circuit of the TDC or by a digital post-processing function to provide a compensated TDC output.Type: ApplicationFiled: July 8, 2024Publication date: April 3, 2025Inventors: Eythan Familier, Kartik Sridharan, Jun Li, Gaurav Menon, Shamsun Nahar, Akhil Garlapati, Scott Humphreys, Antonio Geremia
-
Patent number: 12231135Abstract: A method and/or apparatus for tuning a frequency synthesizer device toward a prescribed frequency may input a signal into the input of the frequency synthesizer to produce an output signal having an output frequency, select a first one of a set of the above noted prescribed coarse curves, and compare the magnitude of the difference between the prescribed frequency and the output frequency. Next, the method selects a second of the set of coarse curves as a function of the magnitude of the difference between the prescribed frequency and the output frequency. Preferably, the method selects the second of the set of coarse curves by selecting one or more of the coarse curves out of the sequential frequency order as a function of the magnitude of the difference between the prescribed frequency and the output frequency.Type: GrantFiled: January 27, 2023Date of Patent: February 18, 2025Assignee: Anokiwave, Inc.Inventors: Jun Li, Kartik Sridharan, Gaurav Menon, Antonio Geremia, Scott Humphreys, Akhil Garlapati, Shamsun Nahar, Kevin Greene
-
Publication number: 20240372517Abstract: An envelope stacking power amplifier system reduces current for a given output power level without sacrificing the ability to support large voltage swings at saturation and therefore increases efficiency at the maximum linear operating power and all power levels below that. The system includes a stack/unstack controller including circuitry configured to switch the RF power amplifier system between a stacked mode in which first and second RF amplifiers are coupled in a stacked configuration and an unstacked mode in which the first and second RF amplifiers are coupled in an unstacked configuration in response to one or more mode-control signals, the stacked configuration providing reduced current compared to the unstacked configuration.Type: ApplicationFiled: May 13, 2024Publication date: November 7, 2024Inventors: Susanne Paul, Akhil Garlapati, Yan Li
-
Patent number: 12063049Abstract: Digital post-processing of time-to-digital converter (TDC) output data can be used to map each TDC code to the ideal one, but this requires knowing the TDC input-output mapping. Therefore, a calibration system and method are provided for characterizing operation of a TDC to compensate for non-idealities. Input signals having a known time difference are provided to the TDC, and a mapping between the TDC output and the known time difference is stored in a mapping table. With the described method, it is possible to input an input ramp of very low slope to construct this mapping to a desired resolution during a background calibration procedure. This characterizing and mapping can be performed across a range of input signals having different known time differences. After calibration, a mapping table can be used by a mapping circuit of the TDC or by a digital post-processing function to provide a compensated TDC output.Type: GrantFiled: March 1, 2022Date of Patent: August 13, 2024Assignee: Anokiwave, Inc.Inventors: Eythan Familier, Kartik Sridharan, Jun Li, Gaurav Menon, Shamsun Nahar, Akhil Garlapati, Scott Humphreys, Antonio Geremia
-
Publication number: 20240219867Abstract: A time-to-digital converter (TDC) uses voltage as a representation of time offset. A voltage change is induced over a time period from a start signal to a stop signal. The final voltage is then measured, and the voltage measurement is mapped to a time value representing the time between the start signal and the stop signal. The voltage change can be increasing or decreasing, e.g., by charging or discharging a capacitive circuit between the start signal and the stop signal. The voltage can be measured using an analog-to-digital converter (ADC) or other voltage measurement circuit. The voltage measurement can be mapped to the time value in any manner, such as, for example, using a transfer function or using a mapping table that provides a time value for each possible voltage measurement value.Type: ApplicationFiled: November 6, 2023Publication date: July 4, 2024Inventors: Kartik Sridharan, Jun Li, Eythan Familier, Gaurav Menon, Shamsun Nahar, Akhil Garlapati, Scott Humphreys, Antonio Geremia
-
Patent number: 12003224Abstract: An envelope stacking power amplifier system reduces current for a given output power level without sacrificing the ability to support large voltage swings at saturation and therefore increases efficiency at the maximum linear operating power and all power levels below that. The system includes a stack/unstack controller including circuitry configured to switch the RF power amplifier system between a stacked mode in which first and second RF amplifiers are coupled in a stacked configuration and an unstacked mode in which the first and second RF amplifiers are coupled in an unstacked configuration in response to one or more mode-control signals, the stacked configuration providing reduced current compared to the unstacked configuration.Type: GrantFiled: September 3, 2021Date of Patent: June 4, 2024Assignee: Anokiwave, Inc.Inventors: Susanne Paul, Akhil Garlapati, Yan Li
-
Patent number: 11809141Abstract: A time-to-digital converter (TDC) uses voltage as a representation of time offset. A voltage change is induced over a time period from a start signal to a stop signal. The final voltage is then measured, and the voltage measurement is mapped to a time value representing the time between the start signal and the stop signal. The voltage change can be increasing or decreasing, e.g., by charging or discharging a capacitive circuit between the start signal and the stop signal. The voltage can be measured using an analog-to-digital converter (ADC) or other voltage measurement circuit. The voltage measurement can be mapped to the time value in any manner, such as, for example, using a transfer function or using a mapping table that provides a time value for each possible voltage measurement value.Type: GrantFiled: March 1, 2022Date of Patent: November 7, 2023Assignee: Anokiwave, Inc.Inventors: Kartik Sridharan, Jun Li, Eythan Familier, Gaurav Menon, Shamsun Nahar, Akhil Garlapati, Scott Humphreys, Antonio Geremia
-
Patent number: 11743026Abstract: Embodiments of the present invention synchronize multiple synthesizers, such as phase-locked loops (PLLs), in a manner that does not require communication or coordination between the synthesizers. Specifically, each synthesizer is part of a synthesizer circuit that includes a synthesizer (e.g., a PLL), a phase measurement circuit, and a synchronization circuit. A common reference signal (e.g., an alternating clock signal) is provided to the synthesizer circuits. In one exemplary embodiment, in each synthesizer circuit, the phase measurement circuit measures a phase difference between the reference signal and a corresponding output of the synthesizer, and the synchronization circuit adjusts the synthesizer operation based on the measured phase difference in such a way that all of the synthesizers operate in-phase with one another relative to the common reference signal, without having any communication or coordination between the two synthesizer circuits other than provision of the common reference signal.Type: GrantFiled: February 28, 2022Date of Patent: August 29, 2023Assignee: Anokiwave, Inc.Inventors: Kartik Sridharan, Jun Li, Gaurav Menon, Shamsun Nahar, Akhil Garlapati, Scott Humphreys, Antonio Geremia
-
Publication number: 20220303112Abstract: Embodiments of the present invention synchronize multiple synthesizers, such as phase-locked loops (PLLs), in a manner that does not require communication or coordination between the synthesizers. Specifically, each synthesizer is part of a synthesizer circuit that includes a synthesizer (e.g., a PLL), a phase measurement circuit, and a synchronization circuit. A common reference signal (e.g., an alternating clock signal) is provided to the synthesizer circuits. In one exemplary embodiment, in each synthesizer circuit, the phase measurement circuit measures a phase difference between the reference signal and a corresponding output of the synthesizer, and the synchronization circuit adjusts the synthesizer operation based on the measured phase difference in such a way that all of the synthesizers operate in-phase with one another relative to the common reference signal, without having any communication or coordination between the two synthesizer circuits other than provision of the common reference signal.Type: ApplicationFiled: February 28, 2022Publication date: September 22, 2022Applicant: Anokiwave, Inc.Inventors: Kartik Sridharan, Jun Li, Gaurav Menon, Shamsun Nahar, Akhil Garlapati, Scott Humphreys, Antonio Geremia
-
Publication number: 20220283550Abstract: A time-to-digital converter (TDC) uses voltage as a representation of time offset. A voltage change is induced over a time period from a start signal to a stop signal. The final voltage is then measured, and the voltage measurement is mapped to a time value representing the time between the start signal and the stop signal. The voltage change can be increasing or decreasing, e.g., by charging or discharging a capacitive circuit between the start signal and the stop signal. The voltage can be measured using an analog-to-digital converter (ADC) or other voltage measurement circuit. The voltage measurement can be mapped to the time value in any manner, such as, for example, using to a transfer function or using a mapping table that provides a time value for each possible voltage measurement value.Type: ApplicationFiled: March 1, 2022Publication date: September 8, 2022Inventors: Kartik Sridharan, Jun Li, Eythan Familier, Gaurav Menon, Shamsun Nahar, Akhil Garlapati, Scott Humphreys, Antonio Geremia
-
Publication number: 20220286140Abstract: Digital post-processing of time-to-digital converter (TDC) output data can be used to map each TDC code to the ideal one, but this requires knowing the TDC input-output mapping. Therefore, a calibration system and method are provided for characterizing operation of a TDC to compensate for non-idealities. Input signals having a known time difference are provided to the TDC, and a mapping between the TDC output and the known time difference is stored in a mapping table. With the described method, it is possible to input an input ramp of very low slope to construct this mapping to a desired resolution during a background calibration procedure. This characterizing and mapping can be performed across a range of input signals having different known time differences. After calibration, a mapping table can be used by a mapping circuit of the TDC or by a digital post-processing function to provide a compensated TDC output.Type: ApplicationFiled: March 1, 2022Publication date: September 8, 2022Inventors: Eythan Familier, Kartik Sridharan, Jun Li, Gaurav Menon, Shamsun Nahar, Akhil Garlapati, Scott Humphreys, Antonio Geremia
-
Patent number: 11296860Abstract: Embodiments of the present invention synchronize multiple synthesizers, such as phase-locked loops (PLLs), in a manner that does not require communication or coordination between the synthesizers. Specifically, each synthesizer is part of a synthesizer circuit that includes a synthesizer (e.g., a PLL), a phase measurement circuit, and a synchronization circuit. A common reference signal (e.g., an alternating clock signal) is provided to the synthesizer circuits. In one exemplary embodiment, in each synthesizer circuit, the phase measurement circuit measures a phase difference between the reference signal and a corresponding output of the synthesizer, and the synchronization circuit adjusts the synthesizer operation based on the measured phase difference in such a way that all of the synthesizers operate in-phase with one another relative to the common reference signal, without having any communication or coordination between the two synthesizer circuits other than provision of the common reference signal.Type: GrantFiled: July 17, 2020Date of Patent: April 5, 2022Assignee: Anokiwave, Inc.Inventors: Kartik Sridharan, Jun Li, Gaurav Menon, Shamsun Nahar, Akhil Garlapati, Scott Humphreys, Antonio Geremia
-
Publication number: 20220103140Abstract: An envelope stacking power amplifier system reduces current for a given output power level without sacrificing the ability to support large voltage swings at saturation and therefore increases efficiency at the maximum linear operating power and all power levels below that. The system includes a stack/unstack controller including circuitry configured to switch the RF power amplifier system between a stacked mode in which first and second RF amplifiers are coupled in a stacked configuration and an unstacked mode in which the first and second RF amplifiers are coupled in an unstacked configuration in response to one or more mode-control signals, the stacked configuration providing reduced current compared to the unstacked configuration.Type: ApplicationFiled: September 3, 2021Publication date: March 31, 2022Inventors: Susanne Paul, Akhil Garlapati, Yan Li
-
Patent number: 11114990Abstract: An envelope stacking power amplifier system reduces current for a given output power level without sacrificing the ability to support large voltage swings at saturation and therefore increases efficiency at the maximum linear operating power and all power levels below that. The system includes a stack/unstack controller including circuitry configured to switch the RF power amplifier system between a stacked mode in which first and second RF amplifiers are coupled in a stacked configuration and an unstacked mode in which the first and second RF amplifiers are coupled in an unstacked configuration in response to one or more mode-control signals, the stacked configuration providing reduced current compared to the unstacked configuration.Type: GrantFiled: August 12, 2020Date of Patent: September 7, 2021Assignee: Anokiwave, Inc.Inventors: Susanne Paul, Akhil Garlapati, Yan Li
-
Publication number: 20210050828Abstract: An envelope stacking power amplifier system reduces current for a given output power level without sacrificing the ability to support large voltage swings at saturation and therefore increases efficiency at the maximum linear operating power and all power levels below that. The system includes a stack/unstack controller including circuitry configured to switch the RF power amplifier system between a stacked mode in which first and second RF amplifiers are coupled in a stacked configuration and an unstacked mode in which the first and second RF amplifiers are coupled in an unstacked configuration in response to one or more mode-control signals, the stacked configuration providing reduced current compared to the unstacked configuration.Type: ApplicationFiled: August 12, 2020Publication date: February 18, 2021Inventors: Susanne Paul, Akhil Garlapati, Yan Li
-
Publication number: 20210021402Abstract: Embodiments of the present invention synchronize multiple synthesizers, such as phase-locked loops (PLLs), in a manner that does not require communication or coordination between the synthesizers. Specifically, each synthesizer is part of a synthesizer circuit that includes a synthesizer (e.g., a PLL), a phase measurement circuit, and a synchronization circuit. A common reference signal (e.g., an alternating clock signal) is provided to the synthesizer circuits. In one exemplary embodiment, in each synthesizer circuit, the phase measurement circuit measures a phase difference between the reference signal and a corresponding output of the synthesizer, and the synchronization circuit adjusts the synthesizer operation based on the measured phase difference in such a way that all of the synthesizers operate in-phase with one another relative to the common reference signal, without having any communication or coordination between the two synthesizer circuits other than provision of the common reference signal.Type: ApplicationFiled: July 17, 2020Publication date: January 21, 2021Inventors: Kartik Sridharan, Jun Li, Gaurav Menon, Shamsun Nahar, Akhil Garlapati, Scott Humphreys, Antonio Geremia
-
Publication number: 20180372810Abstract: A method involves a first magnetic sensor of a magnetic apparatus measuring an external magnetic field. The method also involves a signal processing circuit of the apparatus performing calibration using a second sensor in response to the external magnetic field. The first sensor and the second sensor are formed on the same substrate. There will be at least one magnetic sensor is used to measure the external magnetic field, and the other magnetic sensor is used in calibration, and therefore, the method ensures an effective output signal can be generated during calibration and enhances the accuracy of the measurement.Type: ApplicationFiled: June 20, 2018Publication date: December 27, 2018Inventors: Leyue Jiang, Yang Zhao, Alexander Dribinsky, Akhil Garlapati, Dalai Li, Zhengwei Huang
-
Patent number: 9702898Abstract: A quadrature error signal cancellation circuit and technique can detect an undesired quadrature signal component in the output of a MEMS gyroscope and null the quadrature signal component. In one embodiment, the cancellation circuit is configured in a feedback loop with the MEMS gyroscope and includes components to detect and condition the quadrature signal, digitize the conditioned quadrature signal, and generate a quadrature error cancellation signal which is provided back to the MEMS gyroscope.Type: GrantFiled: July 1, 2014Date of Patent: July 11, 2017Assignee: PANASONIC CORPORATIONInventors: Ronald J. Lipka, Saroj Rout, Akhil Garlapati
-
Patent number: 9304527Abstract: The present disclosure provides a varying high voltage source implemented with low voltage domain electronic components that are less costly to manufacture. According to one aspect, the present disclosure provides a high voltage circuit apparatus comprising a pull up resistance module, a plurality of cascode cell stages, a first of the cascode cell stages being coupled to the pull up resistance module, a low voltage domain current sink module coupled to a last of the cascode cell stages, and a clamping voltage source coupled to the last of the cascode cell stages. The circuit apparatus is devoid of high-voltage transistor components.Type: GrantFiled: March 13, 2013Date of Patent: April 5, 2016Assignee: Qualtre, Inc.Inventors: Ronald Joseph Lipka, Akhil Garlapati