Patents by Inventor Akifumi Kamijima

Akifumi Kamijima has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11551896
    Abstract: A magnetically actuated MEMS switch 100 includes a first magnetic core portion 120, a first signal line 15, a first contact point 16, a second magnetic core portion 220, a second signal line 25, a second contact point 26, and a first coil portion 111 and a second coil portion 211 serving as a magnetic field applying portion that causes a current to flow in conductor coil to apply a magnetic field to the first magnetic core portion 120 and the second magnetic core portion 220. The first contact point 16 is displaced depending on the presence or absence of a magnetic field applied by the magnetic field applying portion. Connection and disconnection between the first contact point 16 and the second contact point 26 are switched in response to displacement of the first contact point 16.
    Type: Grant
    Filed: June 22, 2021
    Date of Patent: January 10, 2023
    Assignee: TDK CORPORATION
    Inventors: Akifumi Kamijima, Atsushi Iijima, Kyung-Ku Choi, Katsunori Osanai, Daisuke Iwanaga
  • Patent number: 11478874
    Abstract: In a method of processing a substrate, in a second step, only some of a plurality of altered portions are exposed from an opening portion of a mask, and the remaining portions are not exposed. In this case, at the time of etching in a third step, an etching rate may be made different between the altered portions exposed from the opening portion of the mask and the altered portions which are not exposed. Accordingly, it becomes easier to obtain a desired processed shape by adjusting the altered portions exposed from the opening portion of the mask and the altered portions which are not exposed.
    Type: Grant
    Filed: March 17, 2020
    Date of Patent: October 25, 2022
    Assignee: TDK CORPORATION
    Inventor: Akifumi Kamijima
  • Patent number: 11350221
    Abstract: A MEMS microphone includes a substrate, and a first conversion portion and a second conversion portion provided on the substrate, the first conversion portion and the second conversion portion convert sound into an electrical signal, the first conversion portion includes a first through hole, a first membrane covering the first through hole, and a first back plate facing the first membrane via a first air gap, the second conversion portion includes a second through hole, a second membrane covering the second through hole, and a second back plate facing the second membrane via a second air gap, and a dimension of the second air gap is greater than a dimension of the first air gap in a thickness direction of the substrate.
    Type: Grant
    Filed: January 7, 2021
    Date of Patent: May 31, 2022
    Assignee: TDK CORPORATION
    Inventors: Akifumi Kamijima, Tohru Inoue
  • Patent number: 11296673
    Abstract: A component (B) comprising a carrier (TR), on which a functional structure (FS) is covered by a thin-layer covering (DSA) spanning across and resting on the carrier. On a planarization layer arranged above the thin-layer covering (DSA), a wiring level (M1, M2) is realized, which comprises structured conductor paths and which is connected via through-connections to the functional structure (FS).
    Type: Grant
    Filed: June 26, 2017
    Date of Patent: April 5, 2022
    Assignee: SnapTrack, Inc.
    Inventors: Thomas Metzger, Akifumi Kamijima
  • Publication number: 20210313130
    Abstract: A magnetically actuated MEMS switch 100 includes a first magnetic core portion 120, a first signal line 15, a first contact point 16, a second magnetic core portion 220, a second signal line 25, a second contact point 26, and a first coil portion 111 and a second coil portion 211 serving as a magnetic field applying portion that causes a current to flow in conductor coil to apply a magnetic field to the first magnetic core portion 120 and the second magnetic core portion 220. The first contact point 16 is displaced depending on the presence or absence of a magnetic field applied by the magnetic field applying portion. Connection and disconnection between the first contact point 16 and the second contact point 26 are switched in response to displacement of the first contact point 16.
    Type: Application
    Filed: June 22, 2021
    Publication date: October 7, 2021
    Applicant: TDK CORPORATION
    Inventors: Akifumi KAMIJIMA, Atsushi IIJIMA, Kyung-Ku CHOI, Katsunori OSANAI, Daisuke IWANAGA
  • Patent number: 11075041
    Abstract: A magnetically actuated MEMS switch 100 includes a first magnetic core portion 120, a first signal line 15, a first contact point 16, a second magnetic core portion 220, a second signal line 25, a second contact point 26, and a first coil portion 111 and a second coil portion 211 serving as a magnetic field applying portion that causes a current to flow in conductor coil to apply a magnetic field to the first magnetic core portion 120 and the second magnetic core portion 220. The first contact point 16 is displaced depending on the presence or absence of a magnetic field applied by the magnetic field applying portion. Connection and disconnection between the first contact point 16 and the second contact point 26 are switched in response to displacement of the first contact point 16.
    Type: Grant
    Filed: April 8, 2019
    Date of Patent: July 27, 2021
    Assignee: TDK CORPORATION
    Inventors: Akifumi Kamijima, Atsushi Iijima, Kyung-Ku Choi, Katsunori Osanai, Daisuke Iwanaga
  • Publication number: 20210127214
    Abstract: A MEMS microphone includes a substrate, and a first conversion portion and a second conversion portion provided on the substrate, the first conversion portion and the second conversion portion convert sound into an electrical signal, the first conversion portion includes a first through hole, a first membrane covering the first through hole, and a first back plate facing the first membrane via a first air gap, the second conversion portion includes a second through hole, a second membrane covering the second through hole, and a second back plate facing the second membrane via a second air gap, and a dimension of the second air gap is greater than a dimension of the first air gap in a thickness direction of the substrate.
    Type: Application
    Filed: January 7, 2021
    Publication date: April 29, 2021
    Applicant: TDK CORPORATION
    Inventors: Akifumi KAMIJIMA, Tohru INOUE
  • Patent number: 10917728
    Abstract: A MEMS microphone includes a substrate, and a first conversion portion and a second conversion portion provided on the substrate, the first conversion portion and the second conversion portion convert sound into an electrical signal, the first conversion portion includes a first through hole, a first membrane covering the first through hole, and a first back plate facing the first membrane via a first air gap, the second conversion portion includes a second through hole, a second membrane covering the second through hole, and a second back plate facing the second membrane via a second air gap, and a dimension of the second air gap is greater than a dimension of the first air gap in a thickness direction of the substrate.
    Type: Grant
    Filed: July 12, 2019
    Date of Patent: February 9, 2021
    Assignee: TDK CORPORATION
    Inventors: Akifumi Kamijima, Tohru Inoue
  • Publication number: 20200316712
    Abstract: In a method of processing a substrate, in a second step, only some of a plurality of altered portions are exposed from an opening portion of a mask, and the remaining portions are not exposed. In this case, at the time of etching in a third step, an etching rate may be made different between the altered portions exposed from the opening portion of the mask and the altered portions which are not exposed. Accordingly, it becomes easier to obtain a desired processed shape by adjusting the altered portions exposed from the opening portion of the mask and the altered portions which are not exposed.
    Type: Application
    Filed: March 17, 2020
    Publication date: October 8, 2020
    Applicant: TDK Corporation
    Inventor: Akifumi KAMIJIMA
  • Patent number: 10687149
    Abstract: A MEMS microphone includes a substrate, and a first conversion portion and a second conversion portion provided on the substrate, the first conversion portion and the second conversion portion convert sound into an electrical signal, the first conversion portion includes a first through hole, a first membrane covering the first through hole, and a first back plate facing the first membrane via a first air gap, the second conversion portion includes a second through hole, a second membrane covering the second through hole, and a second back plate facing the second membrane via a second air gap, and an area of the second membrane is 1.21 times or more and 2.25 times or less an area of the first membrane when viewed in a thickness direction of the substrate.
    Type: Grant
    Filed: July 12, 2019
    Date of Patent: June 16, 2020
    Assignee: TDK CORPORATION
    Inventors: Akifumi Kamijima, Tohru Inoue
  • Patent number: 10679785
    Abstract: Provided is a coil component including a coil portion that has at least one layer of ring-shaped planar coil portion including a coil-wound portion and an insulative resin layer which covers the periphery of the coil-wound portion within the same layer as the coil-wound portion, and an insulative resin layer overlapping the planar coil portion; and a covering portion that covers the coil portion. The insulative resin layer has a superimposing region overlapping a forming region of the planar coil portion and a protrusion region protruding from at least any one of an inner peripheral edge and an outer peripheral edge of the superimposing region, when viewed in the direction of overlapping the planar coil portion.
    Type: Grant
    Filed: April 24, 2017
    Date of Patent: June 9, 2020
    Assignee: TDK CORPORATION
    Inventor: Akifumi Kamijima
  • Publication number: 20200077202
    Abstract: MEMS microphone includes a substrate, and a first conversion portion and a second conversion portion provided on the substrate, the first conversion portion and the second conversion portion convert sound into an electrical signal, the first conversion portion includes a first through hole, a first membrane covering the first through hole, and a first back plate facing the first membrane via a first air gap, the second conversion portion includes a second through hole, a second membrane covering the second through hole, and a second back plate facing the second membrane via a second air gap, and a dimension of the second air gap is greater than a dimension of the first air gap in a thickness direction of the substrate.
    Type: Application
    Filed: July 12, 2019
    Publication date: March 5, 2020
    Applicant: TDK CORPORATION
    Inventors: Akifumi KAMIJIMA, Tohru INOUE
  • Publication number: 20200077201
    Abstract: A MEMS microphone includes a substrate, and a first conversion portion and a second conversion portion provided on the substrate, the first conversion portion and the second conversion portion convert sound into an electrical signal, the first conversion portion includes a first through hole, a first membrane covering the first through hole, and a first back plate facing the first membrane via a first air gap, the second conversion portion includes a second through hole, a second membrane covering the second through hole, and a second back plate facing the second membrane via a second air gap, and an area of the second membrane is 1.21 times or more and 2.25 times or less an area of the first membrane when viewed in a thickness direction of the substrate.
    Type: Application
    Filed: July 12, 2019
    Publication date: March 5, 2020
    Applicant: TDK CORPORATION
    Inventors: Akifumi KAMIJIMA, Tohru INOUE
  • Patent number: 10460877
    Abstract: In a thin-film capacitor, a first extraction electrode provided along a side surface of a first groove portion is in contact with a first electrode layer and is not in contact with a second electrode layer. Also, a second extraction electrode provided along a side surface of a second groove portion is in contact with the second electrode layer exposed on the side surface of the second groove portion and is not in contact with the first electrode layer. Thus, a capacitor structure in which the first electrode layer in contact with the first extraction electrode and the second electrode layer in contact with the second extraction electrode are laminated with a dielectric layer therebetween is formed between the first groove portion and the second groove portion.
    Type: Grant
    Filed: May 24, 2017
    Date of Patent: October 29, 2019
    Assignee: TDK CORPORATION
    Inventors: Atsuhiro Tsuyoshi, Akifumi Kamijima
  • Publication number: 20190318893
    Abstract: A magnetically actuated MEMS switch 100 includes a first magnetic core portion 120, a first signal line 15, a first contact point 16, a second magnetic core portion 220, a second signal line 25, a second contact point 26, and a first coil portion 111 and a second coil portion 211 serving as a magnetic field applying portion that causes a current to flow in conductor coil to apply a magnetic field to the first magnetic core portion 120 and the second magnetic core portion 220. The first contact point 16 is displaced depending on the presence or absence of a magnetic field applied by the magnetic field applying portion. Connection and disconnection between the first contact point 16 and the second contact point 26 are switched in response to displacement of the first contact point 16.
    Type: Application
    Filed: April 8, 2019
    Publication date: October 17, 2019
    Applicant: TDK CORPORATION
    Inventors: Akifumi KAMIJIMA, Atsushi IIJIMA, Kyung-Ku CHOI, Katsunori OSANAI, Daisuke IWANAGA
  • Publication number: 20190229703
    Abstract: A component (B) comprising a carrier (TR), on which a functional structure (FS) is covered by a thin-layer covering (DSA) spanning across and resting on the carrier. On a planarization layer arranged above the thin-layer covering (DSA), a wiring level (M1, M2) is realized, which comprises structured conductor paths and which is connected via through-connections to the functional structure (FS).
    Type: Application
    Filed: June 26, 2017
    Publication date: July 25, 2019
    Inventors: Thomas METZGER, Akifumi KAMIJIMA
  • Patent number: 10153092
    Abstract: A thin-film capacitor including a stacked body having a lower electrode layer, a plurality of dielectric layers stacked on the lower electrode layer, one or more internal electrode layers interposed between the dielectric layers, and an upper electrode layer that is stacked on the opposite side of the lower electrode layer with the dielectric layers and the internal electrode layers interposed between, and a cover layer that covers the stacked body. The stacked body includes opening portions that have the lower electrode layer, opens upward in a stacking direction, and has a side surface formed to include an inclined surface. The cover layer is stacked on the inclined surface of the stacked body. A curved surface with a predetermined shape is formed on the inclined surface for each pair of layers including the dielectric layer forming the inclined surface and the electrode layer, forming the inclined surface.
    Type: Grant
    Filed: October 5, 2017
    Date of Patent: December 11, 2018
    Assignee: TDK CORPORATION
    Inventors: Michihiro Kumagae, Akifumi Kamijima, Norihiko Matsuzaka, Junki Nakamoto, Kazuhiro Yoshikawa, Kenichi Yoshida
  • Publication number: 20180102219
    Abstract: A thin-film capacitor including a stacked body having a lower electrode layer, a plurality of dielectric layers stacked on the lower electrode layer, one or more internal electrode layers interposed between the dielectric layers, and an upper electrode layer that is stacked on the opposite side of the lower electrode layer with the dielectric layers and the internal electrode layers interposed between, and a cover layer that covers the stacked body. The stacked body includes opening portions that have the lower electrode layer, opens upward in a stacking direction, and has a side surface formed to include an inclined surface. The cover layer is stacked on the inclined surface of the stacked body. A curved surface with a predetermined shape is formed on the inclined surface for each pair of layers including the dielectric layer forming the inclined surface and the electrode layer, forming the inclined surface.
    Type: Application
    Filed: October 5, 2017
    Publication date: April 12, 2018
    Applicant: TDK CORPORATION
    Inventors: Michihiro KUMAGAE, Akifumi KAMIJIMA, Norihiko MATSUZAKA, Junki NAKAMOTO, Kazuhiro YOSHIKAWA, Kenichi YOSHIDA
  • Publication number: 20170345576
    Abstract: In a thin-film capacitor, a first extraction electrode provided along a side surface of a first groove portion is in contact with a first electrode layer and is not in contact with a second electrode layer. Also, a second extraction electrode provided along a side surface of a second groove portion is in contact with the second electrode layer exposed on the side surface of the second groove portion and is not in contact with the first electrode layer. Thus, a capacitor structure in which the first electrode layer in contact with the first extraction electrode and the second electrode layer in contact with the second extraction electrode are laminated with a dielectric layer therebetween is formed between the first groove portion and the second groove portion.
    Type: Application
    Filed: May 24, 2017
    Publication date: November 30, 2017
    Applicant: TDK CORPORATION
    Inventors: Atsuhiro TSUYOSHI, Akifumi KAMIJIMA
  • Publication number: 20170316868
    Abstract: Provided is a coil component including a coil portion that has at least one layer of ring-shaped planar coil portion including a coil-wound portion and an insulative resin layer which covers the periphery of the coil-wound portion within the same layer as the coil-wound portion, and an insulative resin layer overlapping the planar coil portion; and a covering portion that covers the coil portion. The insulative resin layer has a superimposing region overlapping a forming region of the planar coil portion and a protrusion region protruding from at least any one of an inner peripheral edge and an outer peripheral edge of the superimposing region, when viewed in the direction of overlapping the planar coil portion.
    Type: Application
    Filed: April 24, 2017
    Publication date: November 2, 2017
    Applicant: TDK CORPORATION
    Inventor: Akifumi KAMIJIMA