Patents by Inventor Akihiko Kato

Akihiko Kato has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12132165
    Abstract: An all-solid-state battery includes an electrode body in which a cathode layer that contains a cathode active material and a solid electrolyte, an electrolyte layer that is formed of the solid electrolyte, and an anode layer that contains an anode active material and the solid electrolyte are stacked in this order in an up-down direction, in which the cathode active material is a compound represented by a chemical formula Li2Fe(1-x)MxP(2-y)AyO7, contains at least one metal of Ti, V, Cr, Ni, and Co as the M in the chemical formula, and contains at least one element of B, C, Al, Si, Ga, and Ge as the A in the chemical formula, the x in the chemical formula satisfies 0.8<x?1, the y in the chemical formula satisfies 0?y?0.07, and the anode active material is an anatase titanium oxide represented by a chemical formula TiO2.
    Type: Grant
    Filed: August 19, 2020
    Date of Patent: October 29, 2024
    Assignee: FDK CORPORATION
    Inventors: Shinzo Fujii, Yuji Goto, Masakazu Kobayashi, Tomohiro Fujisawa, Yoichiro Kawano, Masanori Nakanishi, Chihiro Yamamoto, Akihiko Kato
  • Patent number: 12125627
    Abstract: A multilayer conductor component includes an element body, an internal conductor, and an external electrode. The external electrode includes a sintered metal layer. The sintered metal layer is disposed on an end surface, a pair of side surfaces, a first main surface, and a second main surface of the element body. An electrode length, which is a length in the first direction from an edge of the sintered metal layer to a reference plane including the end surface, at a central portion of the first main surface in the third direction, is shorter than the electrode length at each of the ridge portions. The electrode length at a central portion of each of the pair of side surfaces in the second direction is equal to or less than the electrode length at each of the ridge portions.
    Type: Grant
    Filed: June 3, 2021
    Date of Patent: October 22, 2024
    Assignee: TDK CORPORATION
    Inventors: Daiki Kato, Masashi Shimoyasu, Yoji Tozawa, Seiichi Nakagawa, Akihiko Oide, Makoto Yoshino, Kazuhiro Ebina
  • Patent number: 12094642
    Abstract: A multilayer inductor component includes an element body, an internal conductor, and an external electrode. The internal conductor is disposed in the element body. The external electrode is disposed on a surface of the element body and electrically connected to the internal conductor. The external electrode includes a sintered metal layer and a plating layer. The sintered metal layer is disposed on the surface of the element body. The plating layer covers the sintered metal layer. The sintered metal layer includes a thick portion and thin portions. The thick portion covers the surface of the element body. A plurality of glass particles is dispersed in the thick portion. The thin portions cover glass particles exposed on a surface of the thick portion among the plurality of glass particles and being in contact with the plating layer.
    Type: Grant
    Filed: May 25, 2021
    Date of Patent: September 17, 2024
    Assignee: TDK CORPORATION
    Inventors: Masashi Shimoyasu, Daiki Kato, Yoji Tozawa, Takashi Endo, Seiichi Nakagawa, Mitsuru Ito, Kenta Sasaki, Akihiko Oide, Makoto Yoshino, Kazuhiro Ebina
  • Patent number: 12062122
    Abstract: An information processing system includes a memory and processing circuitry configured to generate a display image by rendering plural objects in a virtual space according to the object information; acquire a user input relating to a user object of the plural objects, the user object associated with the user; determine movement of the user object in the virtual space in accordance with the user input; generate positional relationship information indicating a positional relationship in the virtual space between the user object and a predetermined object of the plural objects; store first rendering information for rendering a first animation with a combination of the predetermined object and the user object; and generate the first animation according to the first rendering information in a case that a distance between the predetermined object and the user object is shorter than or equal to a predetermined distance according to the positional relationship information.
    Type: Grant
    Filed: June 28, 2022
    Date of Patent: August 13, 2024
    Assignee: GREE, INC.
    Inventors: Akihiko Shirai, Takuma Kato
  • Patent number: 12052522
    Abstract: A light detecting device includes: one or more switch transistors, a first pixel including a first floating diffusion region coupled to a first photoelectric converter through a first transfer transistor, and a first amplification transistor coupled to the first floating diffusion region, a second pixel including a second floating diffusion region coupled to a second photoelectric converter through a second transfer transistor, and a second amplification transistor coupled to the second floating diffusion region, and a third pixel including a third floating diffusion region coupled to a third photoelectric converter through a third transfer transistor, and a third amplification transistor coupled to the third floating diffusion region. A pixel signal is differentially amplified by the first and third amplification transistors. The first and second floating diffusion regions are selectively connected to each other via one of the one or more switch transistors.
    Type: Grant
    Filed: February 28, 2020
    Date of Patent: July 30, 2024
    Assignee: Sony Semiconductor Solutions Corporation
    Inventors: Mamoru Sato, Akihiko Kato, Eriko Kato
  • Publication number: 20240096913
    Abstract: There is provided a solid-state imaging element capable of increasing a channel area of a pixel transistor and reducing a parasitic capacitance of a gate.
    Type: Application
    Filed: November 9, 2021
    Publication date: March 21, 2024
    Inventors: AKIHIKO KATO, TOSHIHIRO KUROBE, AKIKO HONJO, KOICHI BABA, NAOHIKO KIMIZUKA, YOHEI HIROSE, TOYOTAKA KATAOKA, TAKUYA TOYOFUKU
  • Publication number: 20240080587
    Abstract: To reduce the number of wirings through which transmission and reception are made between chips. The solid-state imaging device includes a first substrate including a pixel array unit in which a plurality of pixels is arranged, each of the plurality of pixels including a photoelectric conversion unit, and the first substrate includes a first wiring through which an imaging pixel signal is transmitted, the imaging pixel signal being read from two or more of the pixels arranged in a first direction in the pixel array unit, a second wiring through which a reset voltage for initializing the first wiring is supplied, and a first switching circuit configured to switch whether or not to short-circuit the first wiring and the second wiring.
    Type: Application
    Filed: December 28, 2021
    Publication date: March 7, 2024
    Inventors: ERIKO KATO, AKIHIKO KATO
  • Publication number: 20230041457
    Abstract: To improve the image quality of image data in a solid-state imaging device that reads a signal according to a potential difference between respective floating diffusion regions of a pair of pixels. A pixel unit is provided with a plurality of rows each including a plurality of pixels. A readout row selection unit selects any of the plurality of rows as a readout row every time a predetermined period elapses, and causes each of the plurality of pixels in the readout row to generate a signal potential according to a received light amount. A reference row selection unit selects a row different from a previous row from among the plurality of rows as a current reference row every time the predetermined period elapses, and causes each of the plurality of pixels in the reference row to generate a predetermined reference potential. A readout circuit unit reads a voltage signal according to a difference between the signal potential and the reference potential.
    Type: Application
    Filed: October 24, 2022
    Publication date: February 9, 2023
    Inventors: Mamoru Sato, Akihiko Kato, Yusuke Oike
  • Patent number: 11553148
    Abstract: To improve the image quality of image data in a solid-state imaging device that reads a signal according to a potential difference between respective floating diffusion regions of a pair of pixels. A pixel unit is provided with a plurality of rows each including a plurality of pixels. A readout row selection unit selects any of the plurality of rows as a readout row every time a predetermined period elapses, and causes each of the plurality of pixels in the readout row to generate a signal potential according to a received light amount. A reference row selection unit selects a row different from a previous row from among the plurality of rows as a current reference row every time the predetermined period elapses, and causes each of the plurality of pixels in the reference row to generate a predetermined reference potential. A readout circuit unit reads a voltage signal according to a difference between the signal potential and the reference potential.
    Type: Grant
    Filed: January 10, 2019
    Date of Patent: January 10, 2023
    Assignee: Sony Semiconductor Solutions Corporation
    Inventors: Mamoru Sato, Akihiko Kato, Yusuke Oike
  • Patent number: 11438543
    Abstract: A solid-state imaging device is disclosed. In one example, a solid-state imaging device includes a current mirror circuit connected to first and second vertical signal lines, first and second unit pixels connected to the first or the second vertical signal line, a current supply line connected to the first and the second unit pixels, and a constant current circuit connected to the current supply line. The unit pixels each include a photoelectric conversion element, a transfer transistor that transfers an electric charge generated in the photoelectric conversion element, first and second charge accumulation units that accumulate the transferred electric charge, a switching transistor configured to control accumulation of the electric charge by the second charge accumulation unit, and an amplification transistor that causes a voltage corresponding to electric charges accumulated the first and/or the second charge accumulation units to appear in the first or the second vertical signal line.
    Type: Grant
    Filed: August 16, 2019
    Date of Patent: September 6, 2022
    Assignee: Sony Semiconductor Solutions Corporation
    Inventors: Mamoru Sato, Akihiko Kato
  • Publication number: 20220141411
    Abstract: To improve charge transfer efficiency in a solid-state imaging device that transfers a charge from a photoelectric conversion element to a floating diffusion layer. A solid-state imaging device is provided with a transfer transistor and a potential control unit. In this solid-state imaging device, the transfer transistor transfers a charge from a photoelectric conversion element to a floating diffusion layer in a predetermined transfer period according to a transfer signal transmitted through a predetermined transfer line. Furthermore, the potential control unit makes a potential in a transfer period of a predetermined signal line capacitively coupled with the floating diffusion layer higher than that outside the transfer period.
    Type: Application
    Filed: November 28, 2019
    Publication date: May 5, 2022
    Inventors: MAMORU SATO, AKIHIKO KATO, YUSUKE OIKE, HIDEHIRO HARATA, HIDEKI NAGANUMA
  • Publication number: 20220060646
    Abstract: A light detecting device includes: one or more switch transistors, a first pixel including a first floating diffusion region coupled to a first photoelectric converter through a first transfer transistor, and a first amplification transistor coupled to the first floating diffusion region, a second pixel including a second floating diffusion region coupled to a second photoelectric converter through a second transfer transistor, and a second amplification transistor coupled to the second floating diffusion region, and a third pixel including a third floating diffusion region coupled to a third photoelectric converter through a third transfer transistor, and a third amplification transistor coupled to the third floating diffusion region. A pixel signal is differentially amplified by the first and third amplification transistors. The first and second floating diffusion regions are selectively connected to each other via one of the one or more switch transistors.
    Type: Application
    Filed: February 28, 2020
    Publication date: February 24, 2022
    Inventors: Mamoru Sato, Akihiko Kato, Eriko Kato
  • Patent number: 11228726
    Abstract: An imaging device includes a plurality of pixels including a first pixel and a second pixel, and a differential amplifier including a first amplification transistor, a second amplification transistor, and a first load transistor. The first load transistor receives a power source voltage. The imaging device includes a first signal line coupled to the first amplification transistor and the first load transistor, a second signal line coupled to the second amplification transistor, and a first reset transistor configured to receive the power source voltage. A gate of the first reset transistor is coupled to the first load transistor. The first pixel includes a first photoelectric conversion element and the first amplification transistor, and the second pixel includes a second photoelectric conversion element and the second amplification transistor.
    Type: Grant
    Filed: December 9, 2020
    Date of Patent: January 18, 2022
    Assignee: Sony Semiconductor Solutions Corporation
    Inventors: Hongbo Zhu, Mamoru Sato, Akihiko Kato
  • Publication number: 20210168317
    Abstract: A solid-state imaging device is disclosed. In one example, a solid-state imaging device includes a current mirror circuit connected to first and second vertical signal lines, first and second unit pixels connected to the first or the second vertical signal line, a current supply line connected to the first and the second unit pixels, and a constant current circuit connected to the current supply line. The unit pixels each include a photoelectric conversion element, a transfer transistor that transfers an electric charge generated in the photoelectric conversion element, first and second charge accumulation units that accumulate the transferred electric charge, a switching transistor configured to control accumulation of the electric charge by the second charge accumulation unit, and an amplification transistor that causes a voltage corresponding to electric charges accumulated the first and/or the second charge accumulation units to appear in the first or the second vertical signal line.
    Type: Application
    Filed: August 16, 2019
    Publication date: June 3, 2021
    Inventors: Mamoru Sato, Akihiko Kato
  • Publication number: 20210144326
    Abstract: To improve the image quality of image data in a solid-state imaging device that reads a signal according to a potential difference between respective floating diffusion regions of a pair of pixels. A pixel unit is provided with a plurality of rows each including a plurality of pixels. A readout row selection unit selects any of the plurality of rows as a readout row every time a predetermined period elapses, and causes each of the plurality of pixels in the readout row to generate a signal potential according to a received light amount. A reference row selection unit selects a row different from a previous row from among the plurality of rows as a current reference row every time the predetermined period elapses, and causes each of the plurality of pixels in the reference row to generate a predetermined reference potential. A readout circuit unit reads a voltage signal according to a difference between the signal potential and the reference potential.
    Type: Application
    Filed: January 10, 2019
    Publication date: May 13, 2021
    Inventors: Mamoru Sato, Akihiko Kato, Yusuke Oike
  • Patent number: 10972689
    Abstract: To prevent the black dot phenomenon from occurring in a differential amplification-type solid-state image sensor. A signal-side amplifier transistor generates an output voltage corresponding to a signal current corresponding to one of a pair of differential input voltages by supplying the signal current from an output node to a common-phase node. A reference-side amplifier transistor supplies a reference current corresponding to the other one of the pair of differential input voltages to the common-phase node. A constant current source constantly controls a sum of the signal current and the reference current to be merged at the common-phase node. A bypass control unit connects the output node and the common-phase node and supplies the signal current having a value corresponding to a predetermined limit voltage to the common-phase node in a case in which the output voltage reaches the limit voltage.
    Type: Grant
    Filed: March 26, 2020
    Date of Patent: April 6, 2021
    Assignee: Sony Corporation
    Inventors: Mamoru Sato, Akihiko Kato
  • Publication number: 20210092317
    Abstract: An imaging device includes a plurality of pixels including a first pixel and a second pixel, and a differential amplifier including a first amplification transistor, a second amplification transistor, and a first load transistor. The first load transistor receives a power source voltage. The imaging device includes a first signal line coupled to the first amplification transistor and the first load transistor, a second signal line coupled to the second amplification transistor, and a first reset transistor configured to receive the power source voltage. A gate of the first reset transistor is coupled to the first load transistor. The first pixel includes a first photoelectric conversion element and the first amplification transistor, and the second pixel includes a second photoelectric conversion element and the second amplification transistor.
    Type: Application
    Filed: December 9, 2020
    Publication date: March 25, 2021
    Applicant: SONY SEMICONDUCTOR SOLUTIONS CORPORATION
    Inventors: Hongbo ZHU, Mamoru SATO, Akihiko KATO
  • Patent number: 10887538
    Abstract: An imaging device includes a plurality of pixels including a first pixel and a second pixel, and a differential amplifier including a first amplification transistor, a second amplification transistor, and a first load transistor. The first load transistor receives a power source voltage. The imaging device includes a first signal line coupled to the first amplification transistor and the first load transistor, a second signal line coupled to the second amplification transistor, and a first reset transistor configured to receive the power source voltage. A gate of the first reset transistor is coupled to the first load transistor. The first pixel includes a first photoelectric conversion element and the first amplification transistor, and the second pixel includes a second photoelectric conversion element and the second amplification transistor.
    Type: Grant
    Filed: October 17, 2017
    Date of Patent: January 5, 2021
    Assignee: Sony Semiconductor Solutions Corporation
    Inventors: Hongbo Zhu, Mamoru Sato, Akihiko Kato
  • Publication number: 20200381775
    Abstract: An all-solid-state battery includes an electrode body in which a cathode layer that contains a cathode active material and a solid electrolyte, an electrolyte layer that is formed of the solid electrolyte, and an anode layer that contains an anode active material and the solid electrolyte are stacked in this order in an up-down direction, in which the cathode active material is a compound represented by a chemical formula Li2Fe(1-x)MxP(2-y)AyO7, contains at least one metal of Ti, V, Cr, Ni, and Co as the M in the chemical formula, and contains at least one element of B, C, Al, Si, Ga, and Ge as the A in the chemical formula, the x in the chemical formula satisfies 0.8<x?1, the y in the chemical formula satisfies 0?y?0.07, and the anode active material is an anatase titanium oxide represented by a chemical formula TiO2.
    Type: Application
    Filed: August 19, 2020
    Publication date: December 3, 2020
    Applicant: FDK CORPORATION
    Inventors: Shinzo Fujii, Yuji Goto, Masakazu Kobayashi, Tomohiro Fujisawa, Yoichiro Kawano, Masanori Nakanishi, Chihiro Yamamoto, Akihiko Kato
  • Publication number: 20200228735
    Abstract: To prevent the black dot phenomenon from occurring in a differential amplification-type solid-state image sensor. A signal-side amplifier transistor generates an output voltage corresponding to a signal current corresponding to one of a pair of differential input voltages by supplying the signal current from an output node to a common-phase node. A reference-side amplifier transistor supplies a reference current corresponding to the other one of the pair of differential input voltages to the common-phase node. A constant current source constantly controls a sum of the signal current and the reference current to be merged at the common-phase node. A bypass control unit connects the output node and the common-phase node and supplies the signal current having a value corresponding to a predetermined limit voltage to the common-phase node in a case in which the output voltage reaches the limit voltage.
    Type: Application
    Filed: March 26, 2020
    Publication date: July 16, 2020
    Applicant: Sony Corporation
    Inventors: Mamoru Sato, Akihiko Kato