Patents by Inventor Akihiko Yanagitani

Akihiko Yanagitani has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9293166
    Abstract: There is disclosed a sputtering target material for producing an intermediate layer film of a perpendicular magnetic recording medium, which is capable of dramatically reducing the crystal grain size of a thin film formed by sputtering. The sputtering target material comprises, in at %, 1 to 20% of W; 0.1 to 10% in total of one or more elements selected from the group consisting of P, Zr, Si and B; and balance Ni.
    Type: Grant
    Filed: April 30, 2009
    Date of Patent: March 22, 2016
    Assignee: Sanyo Special Steel Co., Ltd.
    Inventors: Toshiyuki Sawada, Atsushi Kishida, Akihiko Yanagitani
  • Publication number: 20140154127
    Abstract: There are provided a sputtering target material for a soft-magnetic film layer with a high saturation magnetic flux density and high amorphous properties and a method for producing the sputtering target material. The target material is made of an alloy comprising one or more of Zr, Hf, Nb, Ta and B in an amount satisfying 5 at %?(Zr+Hf+Nb+Ta)+B/2?10 at % and having 7 at % or less of B; 0 to 5 at % in total of Al and Cr; and the balance being Co and Fe in an amount satisfying 0.20?Fe/(Fe+Co)?0.65 (at % ratio) with unavoidable impurities.
    Type: Application
    Filed: February 7, 2014
    Publication date: June 5, 2014
    Applicant: Sanyo Special Steel Co., Ltd.
    Inventors: Toshiyuki Sawada, Akihiko Yanagitani
  • Patent number: 8080201
    Abstract: There is provided a method for producing sputtering target materials which are used for a Ni—W based interlayer in a perpendicular magnetic recording medium. In this producing method, a Ni—W based alloy powder is prepared as a raw material powder. The alloy powder comprises 5 to 20 at % of W and the balance Ni and unavoidable impurities and is produced by gas atomization. The raw material powder is consolidated at a temperature ranging from 900 to 1150° C. This producing method makes it possible to significantly restrain expansion of the powder-filled billet in the consolidation step, thus efficiently producing Ni—W based sputtering target materials with stable qualities.
    Type: Grant
    Filed: July 15, 2008
    Date of Patent: December 20, 2011
    Assignee: Sanyo Special Steel Co., Ltd.
    Inventors: Toshiyuki Sawada, Akihiko Yanagitani
  • Patent number: 8066825
    Abstract: A (CoFe)Zr/Nb/Ta/Hf based target material is provided which is capable of achieving a high sputtering efficiency and a high sputtering effect by increasing the leakage magnetic flux in the magnetron sputtering, and a method for producing the target material. This target material is made of an Fe—Co based alloy comprising not less than 80 atomic % in total of Fe and Co having an Fe:Co atomic ratio of 80:20 to 0:100, and less than 20 atomic % of one or more selected from the group consisting of Zr, Hf, Nb and Ta. The Fe—Co based alloy comprises a Co—Fe phase being a ferromagnetic phase, and the one or more selected from the group consisting of Zr, Hf, Nb and Ta are incorporated in solid solution form into the Co—Fe phase in a total amount of 0.5 to 2 atomic %.
    Type: Grant
    Filed: November 16, 2007
    Date of Patent: November 29, 2011
    Assignee: Sanyo Special Steel Co., Ltd.
    Inventors: Toshiyuki Sawada, Akihiko Yanagitani, Ryoji Hayashi, Yoshikazu Aikawa
  • Patent number: 8057650
    Abstract: A soft-magnetic FeCo based target material is provided which has a high saturation magnetic flux density and superior atmospheric corrosion resistance. The target material is a soft-magnetic FeCo based target material made of an FeCo based alloy. The FeCo based alloy comprises 0 to 30 at. % of one or more metal elements selected from the group consisting of B, Nb, Zr, Ta, Hf, Ti and V; and the balance being Fe and Co with unavoidable impurities. The Fe:Co atomic ratio ranges from 10:90 to 70:30. The FeCo based alloy may further comprise 0.2 at. % to 5.0 at. % of Al and/or Cr.
    Type: Grant
    Filed: November 7, 2007
    Date of Patent: November 15, 2011
    Assignee: Sanyo Special Steel Co., Ltd.
    Inventors: Ryoji Hayashi, Akihiko Yanagitani, Yoshikazu Aikawa, Toshiyuki Sawada
  • Patent number: 7942985
    Abstract: A soft magnetic alloy for perpendicular magnetic recording medium excellent in saturation magnetic flux density, amorphousness and atmospheric corrosion resistance. The alloy is an Fe—Co based alloy and comprises Fe in an amount satisfying 0.25 to 0.65 of Fe/(Fe+Co) ratio, which is an atomic ratio of Fe and Fe+Co; Zr+Hf in an amount of 6 to 100 at %; Na+Ta in an amount of 0 to 2 at %; Al and/or Cr in an amount of 0 to 5 at %; and the balance Co and unavoidable impurities. A part of Zr and/or Hf can be replaced by B, provided that the amount of B to replace Zr and/or Hf is double in at % of the total amount of Zr and Hf to be replaced and that the total amount of Zr and Hf after replacement is 4 at % or more.
    Type: Grant
    Filed: May 1, 2008
    Date of Patent: May 17, 2011
    Assignee: Sanyo Special Steel Co., Ltd.
    Inventors: Toshiyuki Sawada, Akihiko Yanagitani
  • Publication number: 20110020169
    Abstract: There is disclosed a sputtering target material for producing an intermediate layer film of a perpendicular magnetic recording medium, which is capable of dramatically reducing the crystal grain size of a thin film formed by sputtering. The sputtering target material comprises, in at %, 1 to 20% of W; 0.1 to 10% in total of one or more elements selected from the group consisting of P, Zr, Si and B; and balance Ni.
    Type: Application
    Filed: April 30, 2009
    Publication date: January 27, 2011
    Applicant: SANYO SPECIAL STEEL CO., LTD.
    Inventors: Toshiyuki Sawada, Atsushi Kishida, Akihiko Yanagitani
  • Patent number: 7780826
    Abstract: There is disclosed a method for producing a Cr-doped FeCoB based target material that can be used efficiently in magnetron sputtering processes and has a low magnetic permeability. In the method for producing the target material, there are firstly provided raw-materials of two or more kinds of FeCoB based alloy powders which are different in composition from each other, wherein at least one of the FeCoB based alloy powders comprises Fe and Co in a total amount of 60 atom % or more such that Fe:Co atomic ratio is within a range of 70:30 to 40:60, and comprises Cr in an amount which is from 15 to 25 atom % greater than B. Then, the two or more kinds of the FeCoB based alloy powder are mixed and consolidated to form a target material.
    Type: Grant
    Filed: August 14, 2007
    Date of Patent: August 24, 2010
    Assignee: Sanyo Special Steel Co., Ltd.
    Inventors: Toshiyuki Sawada, Akihiko Yanagitani
  • Publication number: 20100209284
    Abstract: A soft magnetic alloy for perpendicular magnetic recording medium excellent n saturation magnetic flux density, amorphousness and atmospheric corrosion resistance. The alloy is an Fe-Co based alloy and comprises Fe in an amount satisfying 0.25 to 0.65 of Fe/(Fe+Co) ratio, which is an atomic ratio of Fe and Fe+Co; Zr+Hf in an amount of 6 to 100 at %; Na+Ta in an amount of 0 to 2 at %; Al and/or Cr in an amount of 0 to 5 at %; and the balance Co and unavoidable impurities. A part of Zr and/or Hf can be replaced by B, provided that the amount of B to replace Zr and/or Hf is double in at % of the total amount of Zr and Hf to be replaced and that the total amount of Zr and Hf after replacement is 4 at % or more.
    Type: Application
    Filed: May 1, 2008
    Publication date: August 19, 2010
    Applicant: SANYO SPECIAL STEEL CO., LTD.
    Inventors: Toshiyuki Sawada, Akihiko Yanagitani
  • Patent number: 7757396
    Abstract: There are disclosed a laser clad valve seat raw-material powder superior in productivity, cladding property, wear resistance and finishing property, and a laser clad valve seat using the same superior in wear resistance. The row-material powder comprises a powder mixture comprising: 80 to 99% by weight of a Cu-based alloy powder comprising 0.5 to 5% by weight of B, 0 to 20% by weight of Ni, 0 to 10% by weight of Fe plus Co, 0 to 5% by weight of Si, 0 to 3% by weight of Al, and the balance Cu and unavoidable impurities; and 1-20% by weight of an Fe or Co based alloy powder having a Vickers hardness of 500 HV or higher and an average particle diameter of 50 to 200 ?m of and comprising 5 to 40% by weight of Mo, 0 to 25% by weight of Cr, 0 to 5% by weight of Si, and the balance Fe or Co and unavoidable impurities.
    Type: Grant
    Filed: July 26, 2007
    Date of Patent: July 20, 2010
    Assignees: Sanyo Special Steel Co., Ltd., Honda Motor Co., Ltd.
    Inventors: Toshiyuki Sawada, Akihiko Yanagitani, Shingo Fukumoto, Tomoki Okita, Takashi Tsuyumu, Makoto Asami, Nobuki Matsuo, Shogo Matsuki, Yoshitaka Tsujii
  • Publication number: 20090071822
    Abstract: There are provided a sputtering target material for a soft-magnetic film layer with a high saturation magnetic flux density and high amorphous properties and a method for producing the sputtering target material. The target material is made of an alloy comprising one or more of Zr, Hf, Nb, Ta and B in an amount satisfying 5 at %?(Zr+Hf+Nb+Ta)+B/2?10 at % and having 7 at % or less of B; 0 to 5 at % in total of Al and Cr; and the balance being Co and Fe in an amount satisfying 0.20?Fe/(Fe+Co)?0.65 (at % ratio) with unavoidable impurities.
    Type: Application
    Filed: September 17, 2008
    Publication date: March 19, 2009
    Applicant: SANYO SPECIAL STEEL CO., LTD.
    Inventors: Toshiyuki Sawada, Akihiko Yanagitani
  • Publication number: 20090022614
    Abstract: There is provided a method for producing sputtering target materials which are used for a Ni—W based interlayer in a perpendicular magnetic recording medium. In this producing method, a Ni—W based alloy powder is prepared as a raw material powder. The alloy powder comprises 5 to 20 at % of W and the balance Ni and unavoidable impurities and is produced by gas atomization. The raw material powder is consolidated at a temperature ranging from 900 to 1150° C. This producing method makes it possible to significantly restrain expansion of the powder-filled billet in the consolidation step, thus efficiently producing Ni—W based sputtering target materials with stable qualities.
    Type: Application
    Filed: July 15, 2008
    Publication date: January 22, 2009
    Applicant: SANYO SPECIAL STEEL CO., LTD.
    Inventors: Toshiyuki Sawada, Akihiko Yanagitani
  • Publication number: 20080138235
    Abstract: A (CoFe)ZrNb/Ta/Hf based target material is provided which is capable of achieving a high sputtering efficiency and a high sputtering effect by increasing the leakage magnetic flux in the magnetron sputtering, and a method for producing the target material. This target material is made of an Fe—Co based alloy comprising not less than 80 atomic % in total of Fe and Co having an Fe:Co atomic ratio of 80:20 to 0:100, and less than 20 atomic % of one or more selected from the group consisting of Zr, Hf, Nb and Ta. The Fe—Co based alloy comprises a Co—Fe phase being a ferromagnetic phase, and the one or more selected from the group consisting of Zr, Hf, Nb and Ta are solid-solved into the Co—Fe phase in a total amount of 0.5 to 2 atomic %.
    Type: Application
    Filed: November 16, 2007
    Publication date: June 12, 2008
    Applicant: SANYO SPECIAL STEEL CO., LTD.
    Inventors: Toshiyuki Sawada, Akihiko Yanagitani, Ryoji Hayashi, Yoshikazu Aikawa
  • Publication number: 20080112841
    Abstract: A soft-magnetic FeCo based target material is provided which has a high saturation magnetic flux density and superior atmospheric corrosion resistance. The target material is a soft-magnetic FeCo based target material made of an FeCo based alloy. The FeCo based alloy comprises 0 to 30 at. % of one or more metal elements selected from the group consisting of B, Nb, Zr, Ta, Hf, Ti and V; and the balance being Fe and Co with unavoidable impurities. The Fe:Co atomic ratio ranges from 10:90 to 70:30. The FeCo based alloy may further comprise 0.2 at. % to 5.0 at. % of Al and/or Cr.
    Type: Application
    Filed: November 7, 2007
    Publication date: May 15, 2008
    Applicant: SANYO SPECIAL STEEL CO., LTD.
    Inventors: Ryoji Hayashi, Akihiko Yanagitani, Yoshikazu Aikawa, Toshiyuki Sawada
  • Publication number: 20080083391
    Abstract: There are disclosed a laser clad valve seat raw-material powder superior in productivity, cladding property, wear resistance and finishing property, and a laser clad valve seat using the same superior in wear resistance. The row-material powder comprises a powder mixture comprising: 80 to 99% by weight of a Cu-based alloy powder comprising 0.5 to 5% by weight of B, 0 to 20% by weight of Ni, 0 to 10% by weight of Fe plus Co, 0 to 5% by weight of Si, 0 to 3% by weight of Al, and the balance Cu and unavoidable impurities; and 1-20% by weight of an Fe or Co based alloy powder having a Vickers hardness of 500HV or higher and an average particle diameter of 50 to 200 ?m of and comprising 5 to 40% by weight of Mo, 0 to 25% by weight of Cr, 0 to 5% by weight of Si, and the balance Fe or Co and unavoidable impurities.
    Type: Application
    Filed: July 26, 2007
    Publication date: April 10, 2008
    Applicants: SANYO SPECIAL STEEL CO., LTD., HONDA MOTOR CO., LTD.
    Inventors: Toshiyuki Sawada, Akihiko Yanagitani, Shingo Fukumoto, Tomoki Okita, Takashi Tsuyumu, Makoto Asami, Nobuki Matsuo, Shogo Matsuki, Yoshitaka Tsujii
  • Publication number: 20080063555
    Abstract: There is disclosed a method for producing a Cr-doped FeCoB based target material that can be used efficiently in magnetron sputtering processes and has a low magnetic permeability. In the method for producing the target material, there are firstly provided raw-materials of two or more kinds of FeCoB based alloy powders which are different in composition from each other, wherein at least one of the FeCoB based alloy powders comprises Fe and Co in a total amount of 60 atom % or more such that Fe:Co atomic ratio is within a range of 70:30 to 40:60, and comprises Cr in an amount which is from 15 to 25 atom % greater than B. Then, the two or more kinds of the FeCoB based alloy powder are mixed and consolidated to form a target material.
    Type: Application
    Filed: August 14, 2007
    Publication date: March 13, 2008
    Applicant: SANYO SPECIAL STEEL CO., LTD.
    Inventors: Toshiyuki Sawada, Akihiko Yanagitani
  • Publication number: 20080038145
    Abstract: There is disclosed a method for producing a Fe—Co based target material for forming a soft magnetic thin-film. This method comprises the steps of: preparing a first raw-material powder having an Fe:Co weight ratio ranging from 8:2 to 7:3 and a second raw-material powder having an Fe—Co weight ratio ranging from 2:8 to 0:10; mixing the first raw-material powder and the second raw-material powder together to obtain a powder mixture having an Fe:Co weight ratio ranging from 8:2 to 2:8; and applying a pressure of not less than 100 MPa to the powder mixture at a temperature ranging from 1073 to 1473 K for consolidation. At least one additional element selected from the group consisting of Nb, Zr, Ta and Hf is added to either one or both of the first and second raw-material powders in a total amount of 3 to 15 atom % with respect to the total amount of the powder mixture. The Fe—Co based target material thus produced has a high density, while having a magnetic permeability lower than the conventional one.
    Type: Application
    Filed: April 24, 2007
    Publication date: February 14, 2008
    Applicant: SANYO SPECIAL STEEL CO., LTD.
    Inventors: Akihiko Yanagitani, Yoshikazu Aikawa
  • Publication number: 20070251821
    Abstract: There is disclosed a soft magnetic target material with an improved atmospheric resistance without deterioration of magnetic properties. A soft magnetic target material according to the first aspect comprises a Fe—Co based alloy having a Fe:Co atomic ratio of 100:0 to 20:80, wherein the alloy further comprises one or both of Al and Cr of 0.2 to 5 atom %. In addition, a soft magnetic target material according to the second aspect comprises a Fe—Ni based alloy having a Fe:Ni atomic ratio of 100:0 to 20:80, wherein the alloy further comprises one or both of Al and Cr of 0.2 to 5 atom %. In the soft magnetic target materials according to the first and second aspects, the alloys further comprise one or more selected from a group consisting of B, Nb, Zr, Ta, Hf, Ti and V of not more than 30 atom %.
    Type: Application
    Filed: April 10, 2007
    Publication date: November 1, 2007
    Applicant: SANYO SPECIAL STEEL CO., LTD.
    Inventors: Akihiko Yanagitani, Yoshikazu Aikawa
  • Patent number: 5108698
    Abstract: A method of making a disc-shaped or plate-shaped sintered body from powdered material of poor ductility, such as Sendust alloy, wherein the powdered material is filled in a dish-like metallic vessel having a thick bottom wall and a low side wall, a plurality of such filled vessels are piled up and put in a cylindrical capsule made of hot-workable metal, the capsule is charged in a container of a hot extrusion press whose outlet is closed and it is then heated and compressed. The resultant compressed product is taken out and cooled and metallic parts resulted from the vessels and capsule are removed from the compressed product, thereby obtaining plate-shaped sintered bodies as wanted.
    Type: Grant
    Filed: December 20, 1990
    Date of Patent: April 28, 1992
    Assignee: Sanyo Special Steel Company, Limited
    Inventors: Masahide Murakami, Akihiko Yanagitani, Yoshikazu Tanaka