Patents by Inventor Akihiro Miyasaka

Akihiro Miyasaka has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11083198
    Abstract: In crop production in the fields of agriculture, horticulture and the like, the damage caused by insect pests etc. is still immense, and insect pests resistant to existing insecticides have emerged. Under such circumstances, the development of novel agricultural and horticultural insecticides is desired. The present invention provides an agricultural and horticultural insecticide comprising a 4H-pyrrolopyridine compound represented by the general formula (1): {wherein R1 represents a halogen atom, R2 and R3 each represent a haloalkyl group, Q represents Q-A, Q-B or Q-C, X represents a nitrogen atom, R4 and R7 each represent a hydrogen atom, R2 and R3 each represent a halogen atom, a haloalkyl group or a substituted phenyl group, and m represents 2} or a salt thereof as an active ingredient; and a method for using the insecticide.
    Type: Grant
    Filed: December 26, 2017
    Date of Patent: August 10, 2021
    Assignee: Nihon Nohyaku Co., Ltd.
    Inventors: Ikki Yonemura, Yusuke Sano, Naoto Shimizu, Akihiro Miyasaka, Akiyuki Suwa, Shunpei Fujie, Ryosuke Tanaka
  • Patent number: 11064699
    Abstract: In crop production in the fields of agriculture, horticulture and the like, the damage caused by insect pests etc. is still immense, and insect pests resistant to existing insecticides have emerged. The present invention has been made in view of such circumstances, and an object of the present invention is to develop and provide a novel agricultural and horticultural insecticide. The present invention provides a condensed heterocyclic compound represented by the general formula (1): {wherein Q represents a ring group represented by any of Q-1, Q-2, and Q-3, R5 and R8 each represent a hydrogen atom, R6 and R7 each represent a hydrogen atom, a halogen atom or a (C1-C6) haloalkyl group, and m represents 2}, or a salt thereof.
    Type: Grant
    Filed: April 26, 2018
    Date of Patent: July 20, 2021
    Assignee: Nihon Nohyaku Co., Ltd.
    Inventors: Akihiro Miyasaka, Ikki Yonemura, Akiyuki Suwa, Shunpei Fujie, Ryosuke Tanaka
  • Publication number: 20200085056
    Abstract: In crop production in the fields of agriculture, horticulture and the like, the damage caused by insect pests etc. is still immense, and insect pests resistant to existing insecticides have emerged. Under such circumstances, the development of novel agricultural and horticultural insecticides is desired. The present invention provides an agricultural and horticultural insecticide comprising a 4H-pyrrolopyridine compound represented by the general formula (1): {wherein R1 represents a halogen atom, R2 and R3 each represent a haloalkyl group, Q represents Q-A, Q-B or Q-C, X represents a nitrogen atom, R4 and R7 each represent a hydrogen atom, R2 and R3 each represent a halogen atom, a haloalkyl group or a substituted phenyl group, and m represents 2} or a salt thereof as an active ingredient; and a method for using the insecticide.
    Type: Application
    Filed: December 26, 2017
    Publication date: March 19, 2020
    Inventors: Ikki Yonemura, Yusuke Sano, Naoto Shimizu, Akihiro Miyasaka, Akiyuki Suwa, Shunpei Fujie, Ryosuke Tanaka
  • Publication number: 20200068893
    Abstract: In crop production in the fields of agriculture, horticulture and the like, the damage caused by insect pests etc. is still immense, and insect pests resistant to existing insecticides have emerged. The present invention has been made in view of such circumstances, and an object of the present invention is to develop and provide a novel agricultural and horticultural insecticide. The present invention provides a condensed heterocyclic compound represented by the general formula (1): {wherein Q represents a ring group represented by any of Q-1, Q-2, and Q-3, R5 and R8 each represent a hydrogen atom, R6 and R7 each represent a hydrogen atom, a halogen atom or a (C1-C6) haloalkyl group, and m represents 2}, or a salt thereof.
    Type: Application
    Filed: April 26, 2018
    Publication date: March 5, 2020
    Inventors: Akihiro Miyasaka, Ikki Yonemura, Akiyuki Suwa, Shunpei Fujie, Ryosuke Tanaka
  • Patent number: 9334555
    Abstract: Exemplary embodiments of the present invention can provide a hot dip galvannealed steel sheet which has excellent corrosion resistance, workability, coatability and appearance. The exemplary galvannealed sheet can include an ultra-low carbon steel sheet having a plating layer which includes about 8 to 13% Fe, about 0.05 to 1.0% Ni, about 0.15 to 1.5% Al, and a balance of Zn and unavoidable impurities. An exemplary method for producing a hot dip galvannealed steel sheet is also provided which can include cleaning an annealed ultra-low carbon steel sheet, preplating it with Ni, rapidly heating the sheet in a nonoxidizing or reducing atmosphere, plating the sheet in a galvanization bath containing Al, wiping it, then rapidly reheating it and either cooling the sheet without any soaking time or soaking and holding it for less than 15 seconds and then cooling it.
    Type: Grant
    Filed: January 17, 2013
    Date of Patent: May 10, 2016
    Assignee: NIPON STEEL & SUMITOMO METAL CORPORATION
    Inventors: Kiyokazu Ishizuka, Kazumi Nishimura, Ikuo Kikuchi, Akihiro Miyasaka
  • Patent number: 9109275
    Abstract: Provided is a galvanized steel sheet having a tensile strength of 770 MPa or more including a steel sheet portion, and a plated layer formed on the surface of the steel sheet portion, in which the plated layer is a galvanized plated layer or an galvannealed plated layer, the steel sheet portion has a soft layer that directly adjoins the interface with the plated layer and an inside layer that is other than the soft layer, the thickness D of soft layer is 0.001% to 5% of thickness t of the steel sheet portion, and, when the hardness of the soft layer measured by nano-indentation method is indicated by H1, and the representative hardness of the steel sheet portion measured by the nano-indentation method is indicated by Ha in cross section that goes along the thickness direction of the steel sheet portion, H1 is 5% to 75% of Ha.
    Type: Grant
    Filed: August 31, 2010
    Date of Patent: August 18, 2015
    Assignee: NIPPON STEEL & SUMITOMO METAL CORPORATION
    Inventors: Yasuhide Morimoto, Nobuhiro Fujita, Akihiro Miyasaka, Kazuhiko Honda, Masafumi Azuma, Noriyuki Suzuki, Toshiki Nonaka
  • Patent number: 8802241
    Abstract: In an embodiment of a steel sheet having high Young's modulus, the steel can include in terms of mass %, e.g., C: 0.0005 to 0.30%, Si: 2.3% or less, Mn: 2.7 to 5.0%, P: 0.15% or less, 0.015% or less, Mo: 0.15 to 1.5%, B: 0.0006 to 0.01%, and Al: 0.15% or less, with the remainder being Fe and unavoidable impurities. One or both of {110}<223> pole density and {110}<111> pole density in the ? sheet thickness layer can be 10 or more, and a Young's modulus in a rolling direction can be more than 230 GPa. Other embodiments can include, e.g., Mn: 0.1 to 5.0%, N: 0.01% or less, and one or more of Mo: 0.005 to 1.5%, Nb: 0.005 to 0.20%, Ti: at least 48/14×N (mass %) and 0.2% or less, and B: 0.0001 to 0.01%, at a total content of 0.015 to 1.91 mass %.
    Type: Grant
    Filed: September 26, 2011
    Date of Patent: August 12, 2014
    Assignee: Nippon Steel & Sumitomo Metal Corporation
    Inventors: Natsuko Sugiura, Naoki Yoshinaga, Shunji Hiwatashi, Manabu Takahashi, Koji Hanya, Nobuyoshi Uno, Ryoichi Kanno, Akihiro Miyasaka, Takehide Senuma
  • Patent number: 8390258
    Abstract: Upon detecting an external signal which instructs to stop discharge, an input voltage equal to or less than a set value for the prevention of overdischarge, or an output voltage equal to or more than a set value for the prevention of output of an overvoltage, a control unit (12) stops discharge to a load (40) by opening a switching element (4b) of a step-down unit (11b). Upon detecting that an external signal is reset or an input voltage equal to or more than a set value larger than the set value for the prevention of overdischarge, the control unit (12) resumes discharge to the load (40) by setting the switching element (4b) in a switching operation state or short-circuiting it.
    Type: Grant
    Filed: February 22, 2012
    Date of Patent: March 5, 2013
    Assignee: Nippon Telegraph and Telephone Corporation
    Inventors: Akira Yamashita, Takahisa Shodai, Akihiro Miyasaka, Riichi Kitano
  • Patent number: 8278781
    Abstract: Upon detecting an external signal which instructs to stop discharge, an input voltage equal to or less than a set value for the prevention of overdischarge, or an output voltage equal to or more than a set value for the prevention of output of an overvoltage, a control unit (12) stops discharge to a load (40) by opening a switching element (4b) of a step-down unit (11b). Upon detecting that an external signal is reset or an input voltage equal to or more than a set value larger than the set value for the prevention of overdischarge, the control unit (12) resumes discharge to the load (40) by setting the switching element (4b) in a switching operation state or short-circuiting it.
    Type: Grant
    Filed: May 25, 2007
    Date of Patent: October 2, 2012
    Assignee: Nippon Telegraph and Telephone Corporation
    Inventors: Akira Yamashita, Takahisa Shodai, Akihiro Miyasaka, Riichi Kitano
  • Patent number: 8216397
    Abstract: The present invention provides: a high-strength high-ductility hot-dip galvanized steel sheet and hot-dip galvannealed steel sheet having high fatigue resistance and corrosion resistance; a high-strength hot-dip galvanized steel sheet excellent in ductility, which improves non-plating defects and plating adhesion after severe deformation, and a method of producing the same; a high-strength and high-ductility hot-dip galvanized steel sheet having high fatigue resistance and corrosion resistance; a high-strength hot-dip galvanized steel sheet and hot-dip galvannealed steel sheet having superior appearance and workability, which suppresses the generation of non-plating defects, and a method of producing the same; and a high-strength hot-dip galvannealed steel sheet and a high-strength hot-dip galvanized steel sheet, which suppress non-plating defects and surface defects and have both corrosion resistance, in particular corrosion resistance in an environment containing chlorine ion, and high ductility, and a meth
    Type: Grant
    Filed: June 10, 2009
    Date of Patent: July 10, 2012
    Assignee: Nippon Steel Corporation
    Inventors: Nobuhiro Fujita, Masafumi Azuma, Manabu Takahashi, Yasuhide Morimoto, Masao Kurosaki, Akihiro Miyasaka
  • Publication number: 20120152411
    Abstract: Provided is a galvanized steel sheet having a tensile strength of 770 MPa or more including a steel sheet portion, and a plated layer formed on the surface of the steel sheet portion, in which the plated layer is a galvanized plated layer or an galvannealed plated layer, the steel sheet portion has a soft layer that directly adjoins the interface with the plated layer and an inside layer that is other than the soft layer, the thickness D of soft layer is 0.001% to 5% of thickness t of the steel sheet portion, and, when the hardness of the soft layer measured by nano-indentation method is indicated by H1, and the representative hardness of the steel sheet portion measured by the nano-indentation method is indicated by Ha in cross section that goes along the thickness direction of the steel sheet portion, H1 is 5% to 75% of Ha.
    Type: Application
    Filed: August 31, 2010
    Publication date: June 21, 2012
    Inventors: Yasuhide Morimoto, Nobuhiro Fujita, Akihiro Miyasaka, Masafumi Azuma, Noriyuki Suzuki, Toshiki Nonaka
  • Publication number: 20120146610
    Abstract: Upon detecting an external signal which instructs to stop discharge, an input voltage equal to or less than a set value for the prevention of overdischarge, or an output voltage equal to or more than a set value for the prevention of output of an overvoltage, a control unit (12) stops discharge to a load (40) by opening a switching element (4b) of a step-down unit (11b). Upon detecting that an external signal is reset or an input voltage equal to or more than a set value larger than the set value for the prevention of overdischarge, the control unit (12) resumes discharge to the load (40) by setting the switching element (4b) in a switching operation state or short-circuiting it.
    Type: Application
    Filed: February 22, 2012
    Publication date: June 14, 2012
    Inventors: Akira YAMASHITA, Takahisa Shodai, Akihiro Miyasaka, Riichi Kitano
  • Publication number: 20120146616
    Abstract: Upon detecting an external signal which instructs to stop discharge, an input voltage equal to or less than a set value for the prevention of overdischarge, or an output voltage equal to or more than a set value for the prevention of output of an overvoltage, a control unit (12) stops discharge to a load (40) by opening a switching element (4b) of a step-down unit (11b). Upon detecting that an external signal is reset or an input voltage equal to or more than a set value larger than the set value for the prevention of overdischarge, the control unit (12) resumes discharge to the load (40) by setting the switching element (4b) in a switching operation state or short-circuiting it.
    Type: Application
    Filed: February 22, 2012
    Publication date: June 14, 2012
    Inventors: Akira YAMASHITA, Takahisa Shodai, Akihiro Miyasaka, Riichi Kitano
  • Patent number: 8148994
    Abstract: A control unit (16) of a replacement determination device charges one or more battery modules (10) as determination targets, and measures the voltage change value of the battery module (10) in a predetermined period of time from the time of stoppage of charge by using a voltage measuring device (14). If the voltage change value becomes equal to or more than a reference voltage change value consecutively a predetermined number of times which is equal to or more than one, the control unit determines that the battery module (10) needs to be replaced.
    Type: Grant
    Filed: April 24, 2007
    Date of Patent: April 3, 2012
    Assignee: Nippon Telegraph and Telephone Corporation
    Inventors: Akira Yamashita, Takahisa Shodai, Akihiro Miyasaka, Riichi Kitano
  • Publication number: 20120077051
    Abstract: In an embodiment of a steel sheet having high Young's modulus, the steel can include in terms of mass %, e.g., C: 0.0005 to 0.30%, Si: 2.3% or less, Mn: 2.7 to 5.0%, P: 0.15% or less, 0.015% or less, Mo: 0.15 to 1.5%, B: 0.0006 to 0.01%, and Al: 0.15% or less, with the remainder being Fe and unavoidable impurities. One or both of {110}<223> pole density and {110}<111> pole density in the ? sheet thickness layer can be 10 or more, and a Young's modulus in a rolling direction can be more than 230 GPa. Other embodiments can include, e.g., Mn: 0.1 to 5.0%, N: 0.01% or less, and one or more of Mo: 0.005 to 1.5%, Nb: 0.005 to 0.20%, Ti: at least 48/14×N (mass %) and 0.2% or less, and B: 0.0001 to 0.01%, at a total content of 0.015 to 1.91 mass %.
    Type: Application
    Filed: September 26, 2011
    Publication date: March 29, 2012
    Applicant: Nippon Steel Corporation
    Inventors: Natsuko Sugiura, Naoki Yoshinaga, Shunji Hiwatashi, Manabu Takahashi, Koji Hanya, Nobuyoshi Uno, Ryoichi Kanno, Akihiro Miyasaka, Takehide Senuma
  • Patent number: 8057913
    Abstract: One aspect of the steel sheet having high Young's modulus includes in terms of mass %, C: 0.0005 to 0.30%, Si: 2.5% or less, Mn: 2.7 to 5.0%, P: 0.15% or less, S: 0.015% or less, Mo: 0.15 to 1.5%, B: 0.0006 to 0.01%, and Al: 0.15% or less, with the remainder being Fe and unavoidable impurities, wherein one or both of {110}<223> pole density and {110}<111> pole density in the ? sheet thickness layer is 10 or more, and a Young's modulus in a rolling direction is more than 230 GPa. Another aspect of the steel sheet having high Young's modulus includes, in terms of mass %, C: 0.0005 to 0.30%, Si: 2.5% or less, Mn: 0.1 to 5.0%, P: 0.15% or less, S: 0.015% or less, Al: 0.15% or less, N: 0.01% or less, and further comprises one or two or more of Mo: 0.005 to 1.5%, Nb: 0.005 to 0.20%, Ti: at least 48/14×N (mass %) and 0.2% or less, and B: 0.0001 to 0.01%, at a total content of 0.015 to 1.
    Type: Grant
    Filed: July 27, 2005
    Date of Patent: November 15, 2011
    Assignee: Nippon Steel Corporation
    Inventors: Natsuko Sugiura, Naoki Yoshinaga, Shunji Hiwatashi, Manabu Takahashi, Koji Hanya, Nobuyoshi Uno, Ryoichi Kanno, Akihiro Miyasaka, Takehide Senuma
  • Patent number: 7824509
    Abstract: The present invention provides: a high-strength high-ductility hot-dip galvanized steel sheet and hot-dip galvannealed steel sheet having high fatigue resistance and corrosion resistance; a high-strength hot-dip galvanized steel sheet excellent in ductility, which improves non-plating defects and plating adhesion after severe deformation, and a method of producing the same; a high-strength and high-ductility hot-dip galvanized steel sheet having high fatigue resistance and corrosion resistance; a high-strength hot-dip galvanized steel sheet and hot-dip galvannealed steel sheet having superior appearance and workability, which suppresses the generation of non-plating defects, and a method of producing the same; and a high-strength hot-dip galvannealed steel sheet and a high-strength hot-dip galvanized steel sheet, which suppress non-plating defects and surface defects and have both corrosion resistance, in particular corrosion resistance in an environment containing chlorine ion, and high ductility, and a meth
    Type: Grant
    Filed: August 16, 2007
    Date of Patent: November 2, 2010
    Assignee: Nippon Steel Corporation
    Inventors: Nobuhiro Fujita, Masafumi Azuma, Manabu Takahashi, Yasuhide Morimoto, Masao Kurosaki, Akihiro Miyasaka
  • Publication number: 20100231226
    Abstract: A control unit (16) of a replacement determination device charges one or more battery modules (10) as determination targets, and measures the voltage change value of the battery module (10) in a predetermined period of time from the time of stoppage of charge by using a voltage measuring device (14). If the voltage change value becomes equal to or more than a reference voltage change value consecutively a predetermined number of times which is equal to or more than one, the control unit determines that the battery module (10) needs to be replaced.
    Type: Application
    Filed: April 24, 2007
    Publication date: September 16, 2010
    Inventors: Akira Yamashita, Takahisa Shodai, Akihiro Miyasaka, Riichi Kitano
  • Publication number: 20100013324
    Abstract: Upon detecting an external signal which instructs to stop discharge, an input voltage equal to or less than a set value for the prevention of overdischarge, or an output voltage equal to or more than a set value for the prevention of output of an overvoltage, a control unit (12) stops discharge to a load (40) by opening a switching element (4b) of a step-down unit (11b). Upon detecting that an external signal is reset or an input voltage equal to or more than a set value larger than the set value for the prevention of overdischarge, the control unit (12) resumes discharge to the load (40) by setting the switching element (4b) in a switching operation state or short-circuiting it.
    Type: Application
    Filed: May 25, 2007
    Publication date: January 21, 2010
    Inventors: Akira Yamashita, Takahisa Shodai, Akihiro Miyasaka, Riichi Kitano
  • Publication number: 20090272467
    Abstract: The present invention provides: a high-strength high-ductility hot-dip galvanized steel sheet and hot-dip galvannealed steel sheet having high fatigue resistance and corrosion resistance; a high-strength hot-dip galvanized steel sheet excellent in ductility, which improves non-plating defects and plating adhesion after severe deformation, and a method of producing the same; a high-strength and high-ductility hot-dip galvanized steel sheet having high fatigue resistance and corrosion resistance; a high-strength hot-dip galvanized steel sheet and hot-dip galvannealed steel sheet having superior appearance and workability, which suppresses the generation of non-plating defects, and a method of producing the same; and a high-strength hot-dip galvannealed steel sheet and a high-strength hot-dip galvanized steel sheet, which suppress non-plating defects and surface defects and have both corrosion resistance, in particular corrosion resistance in an environment containing chlorine ion, and high ductility, and a meth
    Type: Application
    Filed: June 10, 2009
    Publication date: November 5, 2009
    Applicant: Nippon Steel Corporation
    Inventors: Nobuhiro Fujita, Masafumi Azuma, Manabu Takahashi, Yasuhide Morimoto, Masao Kurosaki, Akihiro Miyasaka