Patents by Inventor Akihiro Shimase

Akihiro Shimase has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220315449
    Abstract: This automated analyzer comprises a first system 11 that does not need to use degassed water, a second system 12 for which it is preferable to use degassed water and that comprises a degassing device 21 for producing degassed water and a second pump 19 for delivering the degassed water, and a tank 1 having formed therein a first compartment 4 for storing water to supply to the first system 11 and a second compartment 5 for storing degassed water to supply to the second system 12. The second system 12 comprises a circulation system, which comprises a suction flow path 20 and return flow path 24 for connecting the degassing device 21, the second pump 19, and the second compartment 5 of the tank 1, and a usage system, which comprises a discharge flow path 22 and connection flow path 27 for connecting the degassing device 21 and a usage unit for using the degassed water.
    Type: Application
    Filed: March 11, 2020
    Publication date: October 6, 2022
    Inventors: Akihiro SHIMASE, Kazumi KUSANO
  • Patent number: 10858621
    Abstract: The present invention addresses the problem of providing: a cell dispersion measurement mechanism whereby it becomes possible to fully disperse cells regardless of the experiences of operators skilled in cell culture and it also becomes possible to determine the number or concentration of cells accurately; a cell culture apparatus equipped with the cell dispersion measurement mechanism; and a cell dispersion measurement method. The problem can be solved by circulating a cell suspension in a flow path to disperse cell masses contained in the cell suspension, and then determining over time the number or concentration of cells and/or the degree of dispersion of cells in the cell suspension that is flowing in the circulation flow path.
    Type: Grant
    Filed: July 8, 2015
    Date of Patent: December 8, 2020
    Assignee: Hitachi High-Tech Corporation
    Inventors: Masako Kawarai, Akihiro Shimase, Sadamitsu Aso, Toshinari Sakurai, Eiichiro Takada, Kazumichi Imai
  • Patent number: 10456767
    Abstract: A cytometric mechanism includes: a flow path through which a cell suspension is made to flow; a liquid drive unit for sending the cell suspension which is in the flow path; and a computation unit for irradiating, with irradiation light from a light source, a cell suspension flowing through a flow cell, and for finding a cell survival rate in the cell suspension on the basis of a resulting forward scattered light intensity and transmittance and/or side scattered light intensity. The invention is provided with a calibration curve database for storing, in advance, respective calibration curves indicative of a relationship between viable cell concentration and forward scattered light intensity, a relationship between dead cell concentration and the transmittance, and a relationship between a cell survival rate and the side scattered light intensity.
    Type: Grant
    Filed: October 22, 2014
    Date of Patent: October 29, 2019
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Masako Kawarai, Toshinari Sakurai, Akihiro Shimase, Hiroyuki Koshi
  • Publication number: 20190153377
    Abstract: A sterile connector has a first connector including a first housing provided with a first flow channel; a first pipeline connected to the first flow channel; first and second openings, the first opening being positioned inward from the second opening; and a first sealing member covering the second opening. Also, a second connector includes a second housing provided with a second flow channel; a third opening; and a second sealing member covering the third opening. The first and second connectors are detachable from each other. The first sealing member seals a space between the inner circumferential surface of the first housing and the outer circumferential surface of the second housing, while the second sealing member seals a space between the inner circumferential surface of the second housing and the outer circumferential surface of the first pipeline so that the first flow channel communicates with the second flow channel.
    Type: Application
    Filed: November 7, 2014
    Publication date: May 23, 2019
    Inventors: Akihiro SHIMASE, Eiichiro TAKADA, Kazumichi IMAI, Toshinari SAKURAI
  • Patent number: 10266801
    Abstract: According to the present invention, a simple structure can be used to achieve reliable liquid delivery with no residual air, and simple attachment/detachment of a culture vessel, and thus a closed-system cell culture device exhibiting high reliability can be constructed at low cost. In the present invention, a liquid is supplied or discharged while a culture vessel is in an inclined state. The culture vessel is provided with two flow paths, namely an intake flow path and a discharge flow path, which connect a culture chamber and a connection member. Points where the flow paths join with the culture chamber are respectively configured as an intake port and a discharge port. The discharge port is provided in the position nearest to the axis of inclination of the culture vessel. The intake port is provided in a plane projected from a vertical plane including the aforementioned axis of inclination.
    Type: Grant
    Filed: December 24, 2014
    Date of Patent: April 23, 2019
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Akihiro Shimase, Kazumichi Imai, Eiichiro Takada, Sadamitsu Aso
  • Patent number: 10208277
    Abstract: According to the present invention, a problem of closed systems, namely minimizing the number of electromagnetic valves required to control a plurality of flow paths, can be addressed, and thus a low-cost cell culture device can be achieved. In this flow-path control method for X number of flow paths satisfying X?2N, the X number of flow paths are selected by using N number of valves to simultaneously and selectively control the opening and closing of the plurality of flow paths.
    Type: Grant
    Filed: December 24, 2014
    Date of Patent: February 19, 2019
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Akihiro Shimase, Kazumichi Imai, Eiichiro Takada, Sadamitsu Aso
  • Patent number: 10138456
    Abstract: A device which automatically performs a step in which expanded and cultured cells are diluted to a desired cell concentration and re-inoculated using a cell-concentration adjustment device having an inlet for taking in a cell suspension; an outlet for discharging a diluted cell suspension; and a flow path which is provided between the inlet and the outlet and is capable of holding a cell suspension, the flow path being provided with: a liquid delivery pump for causing a cell suspension inside to flow; a cell-concentration measurement instrument for collecting data related to a cell concentration per unit amount of the cell suspension; and a dilution-liquid container for holding a dilution liquid which is supplied to the flow path to dilute the cell suspension.
    Type: Grant
    Filed: July 8, 2015
    Date of Patent: November 27, 2018
    Assignee: HITACHI HIGH-TECHNOLOGIES CORPORATION
    Inventors: Akihiro Shimase, Kazumichi Imai, Sadamitsu Aso, Eiichiro Takada, Masako Kawarai, Toshinari Sakurai
  • Publication number: 20180258377
    Abstract: Provided are a flow passage module which can achieve complete liquid substitution in a circulating flow passage with a simple structure, and a cell culture apparatus using said flow passage module. A flow passage module comprises: a flexible branching section which is provided with a first branching flow passage connected with an inflow passage for a fluid, a second branching flow passage connected with an outflow passage, a third branching flow passage connected with an entry-side end part of a circulating flow passage, and a fourth branching flow passage connected with an exit-side end part of the circulating flow passage, and which enables the branching flow passages to be communicated with each other; and a communication state switching part which has opening/closing members for closing and opening the desired branching flow passage from among the plurality of branching flow passages.
    Type: Application
    Filed: September 28, 2015
    Publication date: September 13, 2018
    Inventors: Akihiro SHIMASE, Toshinari SAKURAI
  • Publication number: 20180080002
    Abstract: The purpose of the present invention is to provide a means for dispersing cell aggregates without damaging the cells, such that a sufficient multiplication rate can be obtained in a subculture. According to the present invention, provided is a cell-suspension processing device which disperses cell aggregates included in a cell suspension. The device is provided with: an inlet for taking in the cell suspension; an outlet for discharging the processed cell suspension; and a flow path which is provided between the inlet and the outlet, and which is capable of holding the cell suspension. The flow path has, provided thereto, a liquid delivery pump for causing the cell suspension inside to flow, a cell-dispersion-degree measurement instrument for measuring the dispersion degree of cells in the cell suspension, and a narrow part for imparting shearing force to the cell suspension flowing inside.
    Type: Application
    Filed: July 8, 2015
    Publication date: March 22, 2018
    Inventors: Akihiro SHIMASE, Kazumichi IMAI, Sadamitsu ASO, Eiichiro TAKADA, Masako KAWARAI, Toshinari SAKURAI
  • Patent number: 9862921
    Abstract: There is provided a method for noninvasively evaluating the cell state (proliferation, multi-layering, and differentiation) of a cell sheet as a mimic tissue at the time of culturing the cell sheet. The method is characterized in that an analysis of an amino acid is conducted with the use of the culture supernatant of a cell sheet to monitor a change in the concentration of any amino acid selected from a group of 5-species of amino acids (Ile, Val, Ser, Leu, and Ala), thereby making a determination.
    Type: Grant
    Filed: June 17, 2014
    Date of Patent: January 9, 2018
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Naoko Senda, Yoko Inoue, Hiroaki Nakagawa, Akihiro Shimase, Ryota Nakajima, Kazumichi Imai, Shizu Takeda
  • Publication number: 20170306287
    Abstract: A cytometric mechanism includes: a flow path through which a cell suspension is made to flow; a liquid drive unit for sending the cell suspension which is in the flow path; and a computation unit for irradiating, with irradiation light from a light source, a cell suspension flowing through a flow cell, and for finding a cell survival rate in the cell suspension on the basis of a resulting forward scattered light intensity and transmittance and/or side scattered light intensity. The invention is provided with a calibration curve database for storing, in advance, respective calibration curves indicative of a relationship between viable cell concentration and forward scattered light intensity, a relationship between dead cell concentration and the transmittance, and a relationship between a cell survival rate and the side scattered light intensity.
    Type: Application
    Filed: October 22, 2014
    Publication date: October 26, 2017
    Inventors: Masako KAWARAI, Toshinari SAKURAI, Akihiro SHIMASE, Hiroyuki KOSHI
  • Publication number: 20170191019
    Abstract: The present invention addresses the problem of providing: a cell dispersion measurement mechanism whereby it becomes possible to fully disperse cells regardless of the experiences of operators skilled in cell culture and it also becomes possible to determine the number or concentration of cells accurately; a cell culture apparatus equipped with the cell dispersion measurement mechanism; and a cell dispersion measurement method. The problem can be solved by circulating a cell suspension in a flow path to disperse cell masses contained in the cell suspension, and then determining over time the number or concentration of cells and/or the degree of dispersion of cells in the cell suspension that is flowing in the circulation flow path.
    Type: Application
    Filed: July 8, 2015
    Publication date: July 6, 2017
    Applicant: Hitachi High-Technologies Corporation
    Inventors: Masako KAWARAI, Akihiro SHIMASE, Sadamitsu ASO, Toshinari SAKURAI, Eiichiro TAKADA, Kazumichi IMAI
  • Publication number: 20170159003
    Abstract: A device which automatically performs a step in which expanded and cultured cells are diluted to a desired cell concentration and re-inoculated using a cell-concentration adjustment device having an inlet for taking in a cell suspension; an outlet for discharging a diluted cell suspension; and a flow path which is provided between the inlet and the outlet and is capable of holding a cell suspension, the flow path being provided with: a liquid delivery pump for causing a cell suspension inside to flow; a cell-concentration measurement instrument for collecting data related to a cell concentration per unit amount of the cell suspension; and a dilution-liquid container for holding a dilution liquid which is supplied to the flow path to dilute the cell suspension.
    Type: Application
    Filed: July 8, 2015
    Publication date: June 8, 2017
    Applicant: HITACHI HIGH-TECHNOLOGIES CORPORATION
    Inventors: Akihiro SHIMASE, Kazumichi IMAI, Sadamitsu ASO, Eiichiro TAKADA, Masako KAWARAI, Toshinari SAKURAI
  • Publication number: 20170037351
    Abstract: According to the present invention, a simple structure can be used to achieve reliable liquid delivery with no residual air, and simple attachment/detachment of a culture vessel, and thus a closed-system cell culture device exhibiting high reliability can be constructed at low cost. In the present invention, a liquid is supplied or discharged while a culture vessel is in an inclined state. The culture vessel is provided with two flow paths, namely an intake flow path and a discharge flow path, which connect a culture chamber and a connection member. Points where the flow paths join with the culture chamber are respectively configured as an intake port and a discharge port. The discharge port is provided in the position nearest to the axis of inclination of the culture vessel. The intake port is provided in a plane projected from a vertical plane including the aforementioned axis of inclination.
    Type: Application
    Filed: December 24, 2014
    Publication date: February 9, 2017
    Inventors: Akihiro SHIMASE, Kazumichi IMAI, Eiichiro TAKADA, Sadamitsu ASO
  • Publication number: 20160319233
    Abstract: According to the present invention, a problem of closed systems, namely minimizing the number of electromagnetic valves required to control a plurality of flow paths, can be addressed, and thus a low-cost cell culture device can be achieved. In this flow-path control method for X number of flow paths satisfying X?2N, the X number of flow paths are selected by using N number of valves to simultaneously and selectively control the opening and closing of the plurality of flow paths.
    Type: Application
    Filed: December 24, 2014
    Publication date: November 3, 2016
    Inventors: Akihiro SHIMASE, Kazumichi IMAI, Eiichiro TAKADA, Sadamitsu ASO
  • Publication number: 20160264918
    Abstract: A cell culture apparatus in which liquid can be supplied uniformly/homogeneously among a plurality of culture containers while keeping cost low. In this cell culture apparatus, a plurality of sealed culture containers (1) having fluid introduction ports and discharge ports are provided, and the plurality of culture containers (1) are connected in parallel, forming a single closed culture system. The cell culture apparatus has a single flow channel switching mechanism (8) for switching a plurality of flow channels connected to the plurality of culture containers (1). The flow channel switching mechanism (8) makes the flow channel resistance of one individual flow channel from among the individual flow channels branching and connecting to the culture containers (1) less than the flow channel resistance of the remainder of the individual flow channels.
    Type: Application
    Filed: September 2, 2014
    Publication date: September 15, 2016
    Inventors: Akihiro SHIMASE, Kazumichi IMAI, Eiichiro TAKADA, Sadamitsu ASO
  • Publication number: 20160122702
    Abstract: There is provided a method for noninvasively evaluating the cell state (proliferation, multi-layering, and differentiation) of a cell sheet as a mimic tissue at the time of culturing the cell sheet. The method is characterized in that an analysis of an amino acid is conducted with the use of the culture supernatant of a cell sheet to monitor a change in the concentration of any amino acid selected from a group of 5-species of amino acids (Ile, Val, Ser, Leu, and Ala), thereby making a determination.
    Type: Application
    Filed: June 17, 2014
    Publication date: May 5, 2016
    Inventors: Naoko SENDA, Yoko INOUE, Hiroaki NAKAGAWA, Akihiro SHIMASE, Ryota NAKAJIMA, Kazumichi IMAI, Shizu TAKEDA
  • Publication number: 20140377132
    Abstract: An automatic analyzer includes a sample dispensing unit that dispenses a sample into a reaction vessel, a reagent dispensing unit that dispenses a reagent, a sample nozzle cleaning tank that cleans a nozzle of the sample dispensing unit, a reagent nozzle cleaning tank that cleans a nozzle of the reagent dispensing unit, a compressor that supplies compressed air, and cleaning water supply means that supplies cleaning water. The tanks each have an upper vent that allows a nozzle to have access for cleaning, a lower vent that drains the cleaning water, a cleaning water jet port that sprays the cleaning water to the nozzle, and a compressed air jet port that removes residual cleaning water left on the nozzle. The lower vent has an opening area wider than that of the upper vent.
    Type: Application
    Filed: November 27, 2012
    Publication date: December 25, 2014
    Applicant: HITACHI HIGH-TECHNOLOGIES CORPORATION
    Inventors: Akihiro Shimase, Yoshihiro Suzuki, Koichi Asada, Kazuhiro Nakamura
  • Patent number: 7027935
    Abstract: A sample dispensing apparatus is realized which can detect a dispensing abnormality occurred during the sample dispensing operation regardless of the type and the extent of the abnormality. A pressure sensor is connected to a dispensing flow passage system, including a sample probe and a dispensing syringe, and a plurality of output values of the pressure sensor during the sample dispensing operation are taken in. A multi-item analysis (based on the Mahalanobis distance) is carried out by using, as items, the plurality of taken-in output values of the pressure sensor. Whether the dispensing is normally performed or not is determined by comparing an analysis result with a threshold. A highly reliable determination result is obtained in spite of variations of sensitivity of the pressure sensor.
    Type: Grant
    Filed: August 6, 2003
    Date of Patent: April 11, 2006
    Assignee: Hitachi High Technologies Corp.
    Inventors: Akihiro Shimase, Hiroyasu Uchida, Katsuhiro Kambara, Tomoyuki Tobita
  • Publication number: 20040034479
    Abstract: A sample dispensing apparatus is realized which can detect a dispensing abnormality occurred during the sample dispensing operation regardless of the type and the extent of the abnormality. A pressure sensor is connected to a dispensing flow passage system, including a sample probe and a dispensing syringe, and a plurality of output values of the pressure sensor during the sample dispensing operation are taken in. A multi-item analysis (based on the Mahalanobis distance) is carried out by using, as items, the plurality of taken-in output values of the pressure sensor. Whether the dispensing is normally performed or not is determined by comparing an analysis result with a threshold. A highly reliable determination result is obtained in spite of variations of sensitivity of the pressure sensor.
    Type: Application
    Filed: August 6, 2003
    Publication date: February 19, 2004
    Inventors: Akihiro Shimase, Hiroyasu Uchida, Katsuhiro Kambara, Tomoyuki Tobita