Patents by Inventor Akiji Higuchi

Akiji Higuchi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10611639
    Abstract: A method for manufacturing an active material, capable of improving the discharge capacity of a lithium ion secondary battery is provided. The method for manufacturing an active material according to the present invention includes a first step of heating a mixture solution including a lithium source, a phosphate source, a vanadium source, and water under pressure to generate a precursor in the mixture solution, and adjusting the pH of the mixture solution including the precursor to be 6 to 8; and a second step of heating the precursor at 425 to 650° C. after the first step to generate an active material.
    Type: Grant
    Filed: March 30, 2012
    Date of Patent: April 7, 2020
    Assignee: TDK CORPORATION
    Inventors: Atsushi Sano, Keitaro Otsuki, Tomohiko Kato, Akinobu Nojima, Akiji Higuchi
  • Patent number: 10230108
    Abstract: An active material capable of improving the discharge capacity of a lithium ion secondary battery is provided. The active material of the present invention includes LiVOPO4 and one or more metal elements selected from the group consisting of Al, Nb, Ag, Mg, Mn, Fe, Zr, Na, K, B, Cr, Co, Ni, Cu, Zn, Si, Be, Ti, and Mo.
    Type: Grant
    Filed: March 30, 2012
    Date of Patent: March 12, 2019
    Assignee: TDK CORPORATION
    Inventors: Atsushi Sano, Keitaro Otsuki, Tomohiko Kato, Akiji Higuchi
  • Patent number: 8993171
    Abstract: To provide an active material from which a sufficient discharge capacity is obtained, an electrode containing the active material, a lithium secondary battery including the electrode, and a method for making an active material. A method for making an active material includes a temperature elevation step of heating a mixture containing a lithium source, a pentavalent vanadium source, a phosphoric acid source, water, and a reductant in a hermetically sealed container at a temperature elevation rate T1 from 25° C. to 110° C. and then at a temperature elevation rate T2 from 110° C. to a designated temperature of 200° C. or more, in which T1>T2; T1=0.5 to 10° C./min; and T2=0.1 to 2.2° C./min.
    Type: Grant
    Filed: July 12, 2011
    Date of Patent: March 31, 2015
    Assignee: TDK Corporation
    Inventors: Atsushi Sano, Keitaro Otsuki, Kouji Tokita, Tomohiko Kato, Akiji Higuchi
  • Patent number: 8936871
    Abstract: An active material contains a triclinic LiVOPO4 crystal particle, while the crystal particle has a spherical form and an average particle size of 20 to 200 nm.
    Type: Grant
    Filed: September 28, 2009
    Date of Patent: January 20, 2015
    Assignee: TDK Corporation
    Inventors: Atsushi Sano, Keitaro Otsuki, Yosuke Miyaki, Takeshi Takahashi, Akiji Higuchi
  • Patent number: 8932762
    Abstract: A method for manufacturing an active material containing a triclinic LiVOPO4 crystal particle that has a spherical form and an average particle size of 20 to 200 nm. The method includes a step of manufacturing the crystal particle by hydrothermal synthesis.
    Type: Grant
    Filed: August 16, 2013
    Date of Patent: January 13, 2015
    Assignee: TDK Corporation
    Inventors: Atsushi Sano, Keitaro Otsuki, Yosuke Miyaki, Takeshi Takahashi, Akiji Higuchi
  • Patent number: 8821763
    Abstract: An active material capable of forming an electrochemical device excellent in its discharge capacity and rate characteristic is provided. The active material in accordance with a first aspect of the present invention comprises a compound particle containing a compound having a composition represented by the following chemical formula (1), a carbon layer covering the compound particle, and a carbon particle. The active material in accordance with a second aspect of the present invention comprises a carbon particle and a compound particle having an average primary particle size of 0.03 to 1.4 ?m, being carried by the carbon particle, and containing a compound represented by the following chemical formula (1): LiaMXO4??(1) where a satisfies 0.9?a?2, M denotes one species selected from the group consisting of Fe, Mn, Co, Ni, and VO, and X denotes one species selected from the group consisting of P, Si, S, V, and Ti.
    Type: Grant
    Filed: September 28, 2009
    Date of Patent: September 2, 2014
    Assignee: TDK Corporation
    Inventors: Atsushi Sano, Keitaro Otsuki, Yosuke Miyaki, Takeshi Takahashi, Tohru Inoue, Akiji Higuchi
  • Patent number: 8734987
    Abstract: The method of manufacturing an active material in accordance with the first aspect of the invention yields an active material containing LiVOPO4 capable of improving the cycle characteristic of a battery. Methods of manufacturing active materials in accordance with the second, third, and fourth aspects of the present invention yield active materials containing LiVOPO4 capable of improving the discharge capacity of a battery.
    Type: Grant
    Filed: June 15, 2011
    Date of Patent: May 27, 2014
    Assignee: TDK Corporation
    Inventors: Atsushi Sano, Keitaro Otsuki, Kouji Tokita, Tomohiko Kato, Akiji Higuchi
  • Publication number: 20140004417
    Abstract: An active material capable of improving the discharge capacity of a lithium ion secondary battery is provided. The active material of the present invention includes LiVOPO4 and one or more metal elements selected from the group consisting of Al, Nb, Ag, Mg, Mn, Fe, Zr, Na, K, B, Cr, Co, Ni, Cu, Zn, Si, Be, Ti, and Mo.
    Type: Application
    Filed: March 30, 2012
    Publication date: January 2, 2014
    Applicant: TDK CORPORATION
    Inventors: Atsushi Sano, Keitaro Otsuki, Tomohiko Kato, Akiji Higuchi
  • Publication number: 20140004416
    Abstract: A method for manufacturing an active material, capable of improving the discharge capacity of a lithium ion secondary battery is provided. The method for manufacturing an active material according to the present invention includes a first step of heating a mixture solution including a lithium source, a phosphate source, a vanadium source, and water under pressure to generate a precursor in the mixture solution, and adjusting the pH of the mixture solution including the precursor to be 6 to 8; and a second step of heating the precursor at 425 to 650° C. after the first step to generate an active material.
    Type: Application
    Filed: March 30, 2012
    Publication date: January 2, 2014
    Applicant: TDK CORPORATION
    Inventors: Atsushi Sano, Keitaro Otsuki, Tomohiko Kato, Akinobu Nojima, Akiji Higuchi
  • Publication number: 20130330261
    Abstract: A method for manufacturing an active material containing a triclinic LiVOPO4 crystal particle that has a spherical form and an average particle size of 20 to 200 nm. The method includes a step of manufacturing the crystal particle by hydrothermal synthesis.
    Type: Application
    Filed: August 16, 2013
    Publication date: December 12, 2013
    Applicant: TDK CORPORATION
    Inventors: Atsushi SANO, Keitaro OTSUKI, Yosuke MIYAKI, Takeshi TAKAHASHI, Akiji HIGUCHI
  • Publication number: 20130130106
    Abstract: To provide an active material from which a sufficient discharge capacity is obtained, an electrode containing the active material, a lithium secondary battery including the electrode, and a method for making an active material. A method for making an active material includes a temperature elevation step of heating a mixture containing a lithium source, a pentavalent vanadium source, a phosphoric acid source, water, and a reductant in a hermetically sealed container at a temperature elevation rate T1 from 25° C. to 110° C. and then at a temperature elevation rate T2 from 110° C. to a designated temperature of 200° C. or more, in which T1>T2; T1=0.5 to 10° C./min; and T2=0.1 to 2.2° C./min.
    Type: Application
    Filed: July 12, 2011
    Publication date: May 23, 2013
    Applicant: TDK CORPORATION
    Inventors: Atsushi Sano, Keitaro Otsuki, Kouji Tokita, Tomohiko Kato, Akiji Higuchi
  • Patent number: 8445135
    Abstract: The present invention provides a method of manufacturing an active material comprising both ?-LiVOPO4 and ?-LiVOPO4. The method of manufacturing an active material in accordance with the present invention comprises a hydrothermal synthesis step of heating a mixture containing a lithium source, a phosphate source, a vanadium source, and water and having a pH greater 7 but smaller than 12.7; and a firing step of firing the mixture after being heated under pressure in the hydrothermal synthesis step.
    Type: Grant
    Filed: March 12, 2010
    Date of Patent: May 21, 2013
    Assignee: TDK Corporation
    Inventors: Atsushi Sano, Keitaro Otsuki, Yosuke Miyaki, Takeshi Takahashi, Tohru Inoue, Akiji Higuchi
  • Publication number: 20120082793
    Abstract: Dispersoids having metal-oxygen groups that are suitable for the production of metal oxide thin-films at a low temperature of 200° C. or below and for the production of homogeneous organic-inorganic hybrid materials. The dispersoid having metal-oxygen bonds may be obtained by mixing a metal compound having at least three hydrolyzable groups with at least 0.5 mole but less than 2 moles of water per mole of the metal compound in an organic solvent, in the absence of an acid, a base, and/or a dispersion stabilizer, and at a temperature at or below the temperature at which the metal compound begins to hydrolyze, then raising the temperature to at least the temperature at which hydrolysis begins.
    Type: Application
    Filed: December 14, 2011
    Publication date: April 5, 2012
    Applicant: NIPPON SODA CO., LTD.
    Inventors: Nobuo KIMURA, Yoshitaka FUJITA, Norifumi NAKAMOTO, Motoyuki TOKI, Akiji HIGUCHI, Kazuo ONO, Tomoya HIDAKA, Hiroyuki TAKEDA
  • Patent number: 8142750
    Abstract: The present invention provides a method of manufacturing an active material which can form an electrochemical device excellent in discharge capacity. The method of manufacturing an active material in accordance with the present invention comprises a hydrothermal synthesis step of heating a mixture including a lithium compound, a metal compound containing one species selected from the group consisting of Fe, Mn, Co, Ni, and V, a phosphorus compound, and water within a reactor while keeping an internal pressure of the reactor at 0.3 MPa or lower by ventilating the inside of the reactor to the outside, and closing the reactor at a time when the temperature of the mixture reaches 100 to 150° C.; and a firing step of firing the mixture after the hydrothermal synthesis step.
    Type: Grant
    Filed: March 12, 2010
    Date of Patent: March 27, 2012
    Assignee: TDK Corporation
    Inventors: Atsushi Sano, Keitaro Otsuki, Yosuke Miyaki, Takeshi Takahashi, Akiji Higuchi
  • Publication number: 20110311868
    Abstract: The method of manufacturing an active material in accordance with the first aspect of the invention yields an active material containing LiVOPO4 capable of improving the cycle characteristic of a battery. Methods of manufacturing active materials in accordance with the second, third, and fourth aspects of the present invention yield active materials containing LiVOPO4 capable of improving the discharge capacity of a battery.
    Type: Application
    Filed: June 15, 2011
    Publication date: December 22, 2011
    Applicant: TDK CORPORATION
    Inventors: Atsushi SANO, Keitaro OTSUKI, Kouji TOKITA, Tomohiko KATO, Akiji HIGUCHI
  • Publication number: 20110135878
    Abstract: Dispersoids having metal-oxygen groups that are suitable for the production of metal oxide thin-films at a low temperature of 200° C. or below and for the production of homogeneous organic-inorganic hybrid materials. The dispersoid having metal-oxygen bonds may be obtained by mixing a metal compound having at least three hydrolyzable groups with at least 0.5 mole but less than 2 moles of water per mole of the metal compound in an organic solvent, in the absence of an acid, a base, and/or a dispersion stabilizer, and at a temperature at or below the temperature at which the metal compound begins to hydrolyze, then raising the temperature to at least the temperature at which hydrolysis begins.
    Type: Application
    Filed: February 2, 2011
    Publication date: June 9, 2011
    Applicant: NIPPON SODA, CO., LTD.
    Inventors: Nobuo Kimura, Yoshitaka Fujita, Norifumi Nakamoto, Motoyuki Toki, Akiji Higuchi, Kazuo Ono, Tomoya Hidaka, Hiroyuki Takeda
  • Patent number: 7909929
    Abstract: The invention provides dispersoids having metal-oxygen groups which are suitable for the production of metal oxide thin-films at a low temperature of 200° C. or below and for the production of homogeneous organic-inorganic hybrid materials. The invention also provides metal oxide thin-films and organic-inorganic hybrid materials endowed with various capabilities, particularly organic-inorganic hybrid materials having a high refractive index and high transparency. Use is made of a dispersoid having metal-oxygen bonds which is obtained by mixing a metal compound having at least three hydrolyzable groups with at least 0.5 mole but less than 2 moles of water per mole of the metal compound in an organic solvent, in the absence of an acid, a base and/or a dispersion stabilizer, and at a temperature at or below the temperature at which the metal compound begins to hydrolyze, then raising the temperature to at least the temperature at which hydrolysis begins.
    Type: Grant
    Filed: November 12, 2003
    Date of Patent: March 22, 2011
    Assignee: Nippon Soda Co., Ltd.
    Inventors: Nobuo Kimura, Yoshitaka Fujita, Norifumi Nakamoto, Motoyuki Toki, Akiji Higuchi, Kazuo Ono, Tomoya Hidaka, Hiroyuki Takeda
  • Publication number: 20110052992
    Abstract: An active material which can improve the discharge capacity of a lithium-ion secondary battery is provided. The active material of the present invention contains a rod-shaped particle group having a ?-type crystal structure of LiVOPO4. The particle group has an average minor axis length S of 1 to 5 ?m, an average major axis length L of 2 to 20 ?m, and L/S of 2 to 10.
    Type: Application
    Filed: August 13, 2010
    Publication date: March 3, 2011
    Applicant: TDK CORPORATION
    Inventors: Atsushi SANO, Keitaro OTSUKI, Yosuke MIYAKI, Takeshi TAKAHASHI, Akiji HIGUCHI
  • Publication number: 20110052995
    Abstract: A method for manufacturing an active material comprising: a hydrothermal synthesis step of heating under pressure, a mixture containing a lithium source, a vanadium source, a phosphoric acid source, water and a water-soluble polymer having a weight average molecular weight of from 200 to 100,000, wherein the ratio of the total mole number of repeating units of the whole water-soluble polymer to the mole number of the vanadium atoms is from 0.02 to 1.0, to produce a precursor of LiVOPO4 having a ?-type crystal structure; and a firing step of heating the precursor of LiVOPO4 having a ?-type crystal structure to obtain LiVOPO4 having a ?-type crystal structure.
    Type: Application
    Filed: August 25, 2010
    Publication date: March 3, 2011
    Applicant: TDK CORPORATION
    Inventors: Atsushi SANO, Keitaro OTSUKI, Yosuke MIYAKI, Takeshi TAKAHASHI, Akiji HIGUCHI
  • Publication number: 20110052473
    Abstract: Methods of manufacturing an active material capable of improving the discharge capacity of a lithium-ion secondary battery are provided. The first method of manufacturing an active material comprises a hydrothermal synthesis step of heating a mixture containing a lithium source, a phosphate source, a vanadium source, water, and a reducing agent to 100 to 195° C. under pressure; and a heat treatment step of heating the mixture to 500 to 700° C. after the hydrothermal synthesis step. The hydrothermal synthesis step adjusts the ratio [P]/[V] of the number of moles of phosphorus [P] contained in the mixture before heating to the number of moles of vanadium [V] contained in the mixture before heating to 0.9 to 1.2. The second method of manufacturing an active material comprises a hydrothermal synthesis step of heating a mixture containing a lithium source, a phosphate source, a vanadium source, water, and a reducing agent to 200 to 300° C.
    Type: Application
    Filed: August 11, 2010
    Publication date: March 3, 2011
    Applicant: TDK CORPORATION
    Inventors: Atsushi SANO, Keitaro OTSUKI, Yosuke MIYAKI, Takeshi TAKAHASHI, Akiji HIGUCHI