Patents by Inventor Akinao Kitahara

Akinao Kitahara has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11374141
    Abstract: A solar cell assembly includes a plurality of solar cells and an inter-cell region provided between adjacent ones of the solar cells included in the plurality of solar cells. Each of the solar cells and the inter-cell region includes: a semiconductor substrate having a first conductivity type and having a first main surface and a second main surface that face away from each other; a first amorphous semiconductor layer having a second conductivity type and being provided on a first main surface side of the semiconductor substrate; an insulating layer provided on part of the first amorphous semiconductor layer; and a first transparent conductive film provided on the first amorphous semiconductor layer so as to cover the insulating layer. In a plan view of the solar cell assembly, the insulating layer is provided along the inter-cell region and partially overlapping the inter-cell region.
    Type: Grant
    Filed: March 27, 2020
    Date of Patent: June 28, 2022
    Assignee: PANASONIC HOLDINGS CORPORATION
    Inventors: Toshiyuki Sakuma, Kazuya Murata, Masayuki Katagiri, Akiyoshi Ogane, Akinao Kitahara
  • Publication number: 20200313020
    Abstract: A solar cell assembly includes a plurality of solar cells and an inter-cell region provided between adjacent ones of the solar cells included in the plurality of solar cells. Each of the solar cells and the inter-cell region includes: a semiconductor substrate having a first conductivity type and having a first main surface and a second main surface that face away from each other; a first amorphous semiconductor layer having a second conductivity type and being provided on a first main surface side of the semiconductor substrate; an insulating layer provided on part of the first amorphous semiconductor layer; and a first transparent conductive film provided on the first amorphous semiconductor layer so as to cover the insulating layer. In a plan view of the solar cell assembly, the insulating layer is provided along the inter-cell region and partially overlapping the inter-cell region.
    Type: Application
    Filed: March 27, 2020
    Publication date: October 1, 2020
    Inventors: Toshiyuki SAKUMA, Kazuya MURATA, Masayuki KATAGIRI, Akiyoshi OGANE, Akinao KITAHARA
  • Publication number: 20160093753
    Abstract: There is provided a solar cell manufacturing method comprising: a step of preparing a photoelectric conversion cell having a first main surface and a second main surface; a step of forming a first collector electrode on the first main surface and forming a second collector electrode on the second main surface; a step of measuring characteristic values of the photoelectric conversion cell having the first collector electrode and the second collector electrode thereon; and a step of forming a third collector electrode on at least one of the first main surface and the second main surface based on the characteristic values.
    Type: Application
    Filed: September 28, 2015
    Publication date: March 31, 2016
    Inventors: Shoji SATO, Shigeharu TAIRA, Naohiro HITACHI, Akinao KITAHARA
  • Patent number: 8158531
    Abstract: This method of manufacturing a solar cell includes a step of forming a photoelectric conversion layer on a substrate with a plasma treatment apparatus including a first electrode provided in a treatment chamber, a second electrode and a gas supply source supplying gas into the treatment chamber. A recess portion having a bottom portion in the form of a curved surface is provided on another surface of the first electrode, while a plurality of through-holes are provided on the bottom portion of the recess portion.
    Type: Grant
    Filed: March 19, 2010
    Date of Patent: April 17, 2012
    Assignee: Sanyo Electric Co., Ltd.
    Inventor: Akinao Kitahara
  • Patent number: 7999327
    Abstract: In a semiconductor substrate having a first well of a conductivity type opposite to that of the semiconductor substrate, formed on part of a main surface of the semiconductor substrate, a second well of the same conductivity type as the semiconductor substrate, formed on part of a surface region of the first well shallower than the first well, and a third well of a conductivity type opposite to that of the semiconductor substrate, formed in a surface region of the first well, in a region where the second well is not formed and shallower than the first well, by having a fourth well, formed in a region of the main surface of the semiconductor substrate where the first well is not formed and doped with impurities of the same conductivity type as the semiconductor substrate at a lower concentration than the third well, and controlling a reference voltage to be low, it is possible suppress the occurrence of a latch up phenomenon.
    Type: Grant
    Filed: November 30, 2005
    Date of Patent: August 16, 2011
    Assignee: Sanyo Electric Co., Ltd.
    Inventor: Akinao Kitahara
  • Publication number: 20100248409
    Abstract: This method of manufacturing a solar cell includes a step of forming a photoelectric conversion layer on a substrate with a plasma treatment apparatus including a first electrode provided in a treatment chamber, a second electrode and a gas supply source supplying gas into the treatment chamber. A recess portion having a bottom portion in the form of a curved surface is provided on another surface of the first electrode, while a plurality of through-holes are provided on the bottom portion of the recess portion.
    Type: Application
    Filed: March 19, 2010
    Publication date: September 30, 2010
    Applicant: Sanyo Electric Co., Ltd.
    Inventor: Akinao Kitahara
  • Patent number: 7282780
    Abstract: A capacitor having low voltage dependency and high pn junction diode reverse breakdown voltage. A first n-well is formed in the surface of a p-type silicon substrate. A second n-well is superimposed and formed in the first n-well. A gate electrode is formed along the entire surface of the gate insulation film and part of the field insulation film. A p+ type diffusion layer having a high p-type impurity concentration is formed on the surface of the second n-well. The edge of the p+ diffusion layer is spaced from the boundary between the gate insulation film and the field insulation film at which an electric field concentrates.
    Type: Grant
    Filed: July 14, 2004
    Date of Patent: October 16, 2007
    Assignee: Sanyo Electric Co., Ltd.
    Inventor: Akinao Kitahara
  • Patent number: 7145202
    Abstract: A semiconductor device including a source region and a drain region spaced from each other by a predetermined interval and formed on a main surface of a semiconductor substrate. A gate electrode is formed on the semiconductor substrate. A trench is filled with insulation material and formed in the main surface of the semiconductor substrate between a location under the gate electrode and at least one of the source region and the drain region with a predetermined depth. An LDD is formed along the trench and has an impurity concentration that is lower than that of the source region and the drain region.
    Type: Grant
    Filed: February 13, 2004
    Date of Patent: December 5, 2006
    Assignee: Sanyo Electric Co., Ltd.
    Inventor: Akinao Kitahara
  • Publication number: 20060118882
    Abstract: In a semiconductor substrate having a first well of a conductivity type opposite to that of the semiconductor substrate, formed on part of a main surface of the semiconductor substrate, a second well of the same conductivity type as the semiconductor substrate, formed on part of a surface region of the first well shallower than the first well, and a third well of a conductivity type opposite to that of the semiconductor substrate, formed in a surface region of the first well, in a region where the second well is not formed and shallower than the first well, by having a fourth well, formed in a region of the main surface of the semiconductor substrate where the first well is not formed and doped with impurities of the same conductivity type as the semiconductor substrate at a lower concentration than the third well, and controlling a reference voltage to be low, it is possible suppress the occurrence of a latch up phenomenon.
    Type: Application
    Filed: November 30, 2005
    Publication date: June 8, 2006
    Inventor: Akinao Kitahara
  • Publication number: 20050012178
    Abstract: A capacitor having low voltage dependency and high pn junction diode reverse breakdown voltage. A first n-well is formed in the surface of a p-type silicon substrate. A second n-well is superimposed and formed in the first n-well. A gate electrode is formed along the entire surface of the gate insulation film and part of the field insulation film. A p+ type diffusion layer having a high p-type impurity concentration is formed on the surface of the second n-well. The edge of the p+diffusion layer is spaced from the boundary between the gate insulation film and the field insulation film at which an electric field concentrates.
    Type: Application
    Filed: July 14, 2004
    Publication date: January 20, 2005
    Inventor: Akinao Kitahara
  • Publication number: 20040159893
    Abstract: A semiconductor device including a source region and a drain region spaced from each other by a predetermined interval and formed on a main surface of a semiconductor substrate. A gate electrode is formed on the semiconductor substrate. A trench is filled with insulation material and formed in the main surface of the semiconductor substrate between a location under the gate electrode and at least one of the source region and the drain region with a predetermined depth. An LDD is formed along the trench and has an impurity concentration that is lower than that of the source region and the drain region.
    Type: Application
    Filed: February 13, 2004
    Publication date: August 19, 2004
    Inventor: Akinao Kitahara