Patents by Inventor Akinari MATOBA

Akinari MATOBA has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11502235
    Abstract: A thermoelectric material includes a parent phase in which an MgSiSn alloy is a main component, a void formed in the parent phase, and a silicon layer that is formed on at least a wall surface of the void and that includes silicon as a main component. The thermoelectric material further includes MgO in an amount of 1.0 wt. % or more and 20.0 wt. % or less. The silicon layer includes amorphous Si, or amorphous Si and nanosized Si crystals, and the parent phase includes a region in which the composition ratio of the Si of the chemical composition of the MgSiSn alloy is higher than in the other regions and a region in which the composition ratio of the Sn of the chemical composition of the MgSiSn alloy is higher than in the other regions. With these configurations, the thermoelectric material realizes both lower thermal conductivity and lower electrical resistivity.
    Type: Grant
    Filed: August 10, 2018
    Date of Patent: November 15, 2022
    Assignees: HAKUSAN, INC., JAPAN ADVANCED INSTITUTE OF SCIENCE AND TECHNOLOGY, ISHIKAWA PREFECTURE
    Inventors: Shigeyuki Tsurumi, Kazumasa Yasuda, Takeshi Sotome, Mikio Koyano, Takeshi Toyoda, Akinari Matoba, Toshiharu Minamikawa
  • Publication number: 20200227609
    Abstract: A thermoelectric material includes a parent phase in which an MgSiSn alloy is a main component, a void formed in the parent phase, and a silicon layer that is formed on at least a wall surface of the void and that includes silicon as a main component. The thermoelectric material further includes MgO in an amount of 1.0 wt. % or more and 20.0 wt. % or less. The silicon layer includes amorphous Si, or amorphous Si and nanosized Si crystals, and the parent phase includes a region in which the composition ratio of the Si of the chemical composition of the MgSiSn alloy is higher than in the other regions and a region in which the composition ratio of the Sn of the chemical composition of the MgSiSn alloy is higher than in the other regions. With these configurations, the thermoelectric material realizes both lower thermal conductivity and lower electrical resistivity.
    Type: Application
    Filed: August 10, 2018
    Publication date: July 16, 2020
    Inventors: Shigeyuki Tsurumi, Kazumasa YASUDA, Takeshi SOTOME, Mikio KOYANO, Takeshi TOYODA, Akinari MATOBA, Toshiharu MINAMIKAWA