Patents by Inventor Akinori Hayashi

Akinori Hayashi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8125583
    Abstract: A stereoscopic image display apparatus of this invention includes a half mirror having a ½ wavelength plate and a half mirror layer. Therefore, a direction of polarization of light incident on a surface of a transmission side of the half mirror can be rotated and emitted. This can be manufactured at lower manufacturing cost than a construction having the ½ wavelength plate on the front display plane of one of the two image display devices with linear polarization plates having the same polarizing direction, or preparing two image display devices with linear polarization plates having different polarizing directions. A high-quality stereoscopic image can be observed by adjusting the orders and positions of sub-pixel colors of the two image display devices at the time of composition and display through the half mirror.
    Type: Grant
    Filed: March 5, 2010
    Date of Patent: February 28, 2012
    Assignee: Eizo Nanao Corporation
    Inventors: Akinori Hayashi, Hiroshi Ito, Shinichi Honda
  • Patent number: 8047003
    Abstract: A combustor comprises a liquid fuel nozzle for injecting liquid fuel to a combustion chamber, and an air supply nozzle disposed around the liquid fuel nozzle and injecting air. The air supply nozzle is disposed such that air is injected from the air supply nozzle in a direction toward an axis of the liquid fuel nozzle. A space is formed around an outlet of the liquid fuel nozzle, through which the liquid fuel is injected from the liquid fuel nozzle to the combustion chamber, upstream of a distal end of the outlet in a direction in which the liquid fuel is injected. Carbonaceous deposits on surrounding surfaces of the outlet of the liquid fuel nozzle can be suppressed regardless of the operating conditions of a combustor.
    Type: Grant
    Filed: September 28, 2010
    Date of Patent: November 1, 2011
    Assignee: Hitachi, Ltd.
    Inventors: Shouhei Yoshida, Yoshitaka Hirata, Hiroshi Inoue, Tomoya Murota, Toshifumi Sasao, Akinori Hayashi, Isao Takehara
  • Publication number: 20110199547
    Abstract: A stereoscopic image display apparatus of this invention includes a half mirror having a ½ wavelength plate and a half mirror layer. Therefore, a direction of polarization of light incident on a surface of a transmission side of the half mirror can be rotated and emitted. This can be manufactured at lower manufacturing cost than a construction having the ½ wavelength plate on the front display plane of one of the two image display devices with linear polarization plates having the same polarizing direction, or preparing two image display devices with linear polarization plates having different polarizing directions. A high-quality stereoscopic image can be observed by adjusting the orders and positions of sub-pixel colors of the two image display devices at the time of composition and display through the half mirror.
    Type: Application
    Filed: March 5, 2010
    Publication date: August 18, 2011
    Inventors: Akinori Hayashi, Hiroshi Ito, Shinichi Honda
  • Patent number: 7926288
    Abstract: The present invention provides a reformed-fuel-burning gas turbine system that constantly generates good-quality reformed fuel even when heavy fuel has a different composition. The reformed-fuel-burning gas turbine system according to the present invention comprises a heavy oil heater; a water heater; a reformer vessel for mixing high-temperature, high-pressure water with high-temperature, high-pressure heavy oil to cause a hydrothermal reaction and producing reformed fuel from heavy oil; and a gas turbine which operates on the reformed fuel.
    Type: Grant
    Filed: June 8, 2007
    Date of Patent: April 19, 2011
    Assignees: Hitachi, Ltd., Petroleum Energy Center
    Inventors: Osami Yokota, Shinichi Inage, Koji Nishida, Akinori Hayashi, Hirokazu Takahashi, Shinsuke Kokubo
  • Patent number: 7891191
    Abstract: A combustor comprises a liquid fuel nozzle for injecting liquid fuel to a combustion chamber, and an air supply nozzle disposed around the liquid fuel nozzle and injecting air. The air supply nozzle is disposed such that air is injected from the air supply nozzle in a direction toward an axis of the liquid fuel nozzle. A space is formed around an outlet of the liquid fuel nozzle, through which the liquid fuel is injected from the liquid fuel nozzle to the combustion chamber, upstream of a distal end of the outlet in a direction in which the liquid fuel is injected. Carbonaceous deposits on surrounding surfaces of the outlet of the liquid fuel nozzle can be suppressed regardless of the operating conditions of a combustor.
    Type: Grant
    Filed: August 24, 2005
    Date of Patent: February 22, 2011
    Assignee: Hitachi, Ltd.
    Inventors: Shouhei Yoshida, Yoshitaka Hirata, Hiroshi Inoue, Tomoya Murota, Toshifumi Sasao, Akinori Hayashi, Isao Takehara
  • Publication number: 20110011092
    Abstract: A combustor comprises a liquid fuel nozzle for injecting liquid fuel to a combustion chamber, and an air supply nozzle disposed around the liquid fuel nozzle and injecting air. The air supply nozzle is disposed such that air is injected from the air supply nozzle in a direction toward an axis of the liquid fuel nozzle. A space is formed around an outlet of the liquid fuel nozzle, through which the liquid fuel is injected from the liquid fuel nozzle to the combustion chamber, upstream of a distal end of the outlet in a direction in which the liquid fuel is injected. Carbonaceous deposits on surrounding surfaces of the outlet of the liquid fuel nozzle can be suppressed regardless of the operating conditions of a combustor.
    Type: Application
    Filed: September 28, 2010
    Publication date: January 20, 2011
    Inventors: Shouhei YOSHIDA, Yoshitaka Hirata, Hiroshi Inoue, Tomoya Murota, Toshifumi Sasao, Akinori Hayashi, Isao Takehara
  • Patent number: 7707816
    Abstract: A gas turbine system burning heavy-oil modified fuel and a method of operating the gas turbine system, which covers from a stage of modifying heavy oil and producing gas turbine fuel to a stage of operating a gas turbine, including startup, ordinary shutdown and emergency shutdown of the gas turbine. The gas turbine system burning heavy-oil modified fuel comprises a reactor for mixing heavy oil and water to cause reaction, thereby separating and removing a heavy component from the heavy oil, a gas-liquid separator for separating hydrocarbon gas and modified oil obtained in the reactor from each other, a gas turbine combustor for burning the hydrocarbon gas supplied from the gas-liquid separator, and a gas turbine driven by combustion gas produced in the gas turbine combustor. The system further comprises another line for extracting the hydrocarbon gas externally of a relevant system region.
    Type: Grant
    Filed: February 23, 2006
    Date of Patent: May 4, 2010
    Assignees: Hitachi, Ltd., Petroleum Energy Center
    Inventors: Hirokazu Takahashi, Shinichi Inage, Kouji Nishida, Nobuyuki Hokari, Osami Yokota, Akinori Hayashi, Shinsuke Kokubo
  • Patent number: 7658078
    Abstract: A heavy oil reforming system includes a reforming preheater raising the temperature of a mixed fluid comprising a high pressure heavy oil and high pressure steam up to a temperature for reforming reaction. The mixed fluid having been heated up to the temperature for reforming reaction is introduced into a reformer kept at the temperature for reforming reaction and thereby the heavy oil is reformed. This reforming system allows the attainment of a residence time of 1 to 10 min necessary for reforming in a uniform or nearly uniform temperature field, thereby implementing the manufacturing of reformed fuels from a large volume of heavy oil.
    Type: Grant
    Filed: July 29, 2005
    Date of Patent: February 9, 2010
    Assignees: Hitachi, Ltd., Petroleum Energy Center
    Inventors: Koji Nishida, Nobuyuki Hokari, Shin-ichi Inage, Osami Yokota, Hirokazu Takahashi, Masahiko Yamagishi, Akinori Hayashi
  • Patent number: 7611676
    Abstract: In a method for producing gas turbine fuel through the step of modifying heavy fuel oil with the use of an asphaltene-insoluble solvent, the utilization factor of the heavy fuel oil usable as gas turbine fuel is increased by making asphaltene selectively removable. A solvent having a specific inductive capacity in the range of 1.4 to 2.0 is used as the asphaltene-insoluble solvent. In particular, water controlled in temperature and pressure so as to have a specific inductive capacity in the above range is used as the asphaltene-insoluble solvent. By using such a solvent, an asphaltene component contained in the heavy fuel oil can be selectively removed and power generation can be performed while utilizing 95% or more of the heavy fuel oil.
    Type: Grant
    Filed: September 25, 2006
    Date of Patent: November 3, 2009
    Assignees: Hitachi, Ltd., Petroleum Energy Center
    Inventors: Shinichi Inage, Hirokazu Takahashi, Koji Nishida, Akinori Hayashi, Nobuyuki Hokari, Osami Yokota, Shinsuke Kokubo, Tetsuo Sasada, Tsunemasa Nishijima, Toshifumi Sasao
  • Patent number: 7591983
    Abstract: The invention is intended to produce high-pressure light fuel gas with good combustibility by contacting and reacting high-temperature, high-pressure water and heavy oil with each other in a contact-reaction unit to extract light oil components from the heavy oil and to remove metals. The high-temperature, high-pressure water and the heavy oil are introduced to the contact-reaction unit for contact and reaction with each other therein. Heavy oil components not dissolved in the high-temperature, high-pressure water are separated by precipitation from hydrocarbon gases and light oil components which are dissolved in the high-temperature, high-pressure water. The separated heavy oil components are burnt or incinerated without any further modification.
    Type: Grant
    Filed: August 4, 2004
    Date of Patent: September 22, 2009
    Assignees: Hitachi, Ltd., Petroleum Energy Center
    Inventors: Hirokazu Takahashi, Shinichi Inage, Nobuyuki Hokari, Masahiko Yamagishi, Akinori Hayashi, Osami Yokota, Youji Ishibashi
  • Publication number: 20090032436
    Abstract: The invention is intended to produce high-pressure light fuel gas with good combustibility by contacting and reacting high-temperature, high-pressure water and heavy oil with each other in a contact-reaction unit to extract light oil components from the heavy oil and to remove metals. The high-temperature, high-pressure water and the heavy oil are introduced to the contact-reaction unit for contact and reaction with each other therein. Heavy oil components not dissolved in the high-temperature, high-pressure water are separated by precipitation from hydrocarbon gases and light oil components which are dissolved in the high-temperature, high-pressure water. The separated heavy oil components are burnt or incinerated without any further modification.
    Type: Application
    Filed: September 30, 2008
    Publication date: February 5, 2009
    Inventors: Hirokazu Takahashi, Shinichi Inage, Nobuyuki Hokari, Masahiko Yamagishi, Akinori Hayashi, Osami Yokota, Youji Ishibashi
  • Publication number: 20070283701
    Abstract: The present invention provides a reformed-fuel-burning gas turbine system that constantly generates good-quality reformed fuel even when heavy fuel has a different composition. The reformed-fuel-burning gas turbine system according to the present invention comprises a heavy oil heater; a water heater; a reformer vessel for mixing high-temperature, high-pressure water with high-temperature, high-pressure heavy oil to cause a hydrothermal reaction and producing reformed fuel from heavy oil; and a gas turbine which operates on the reformed fuel.
    Type: Application
    Filed: June 8, 2007
    Publication date: December 13, 2007
    Applicants: Hitachi, Ltd., Petroleum Energy Center
    Inventors: Osami Yokota, Shinichi Inage, Koji Nishida, Akinori Hayashi, Hirokazu Takahashi, Shinsuke Kokubo
  • Publication number: 20070215522
    Abstract: In a method for producing gas turbine fuel through the step of modifying heavy fuel oil with the use of an asphaltene-insoluble solvent, the utilization factor of the heavy fuel oil usable as gas turbine fuel is increased by making asphaltene selectively removable. A solvent having a specific inductive capacity in the range of 1.4 to 2.0 is used as the asphaltene- insoluble solvent. In particular, water controlled in temperature and pressure so as to have a specific inductive capacity in the above range is used as the asphaltene-insoluble solvent. By using such a solvent, an asphaltene component contained in the heavy fuel oil can be selectively removed and power generation can be performed while utilizing 95% or more of the heavy fuel oil.
    Type: Application
    Filed: September 25, 2006
    Publication date: September 20, 2007
    Inventors: Shinichi Inage, Hirokazu Takahashi, Koji Nishida, Akinori Hayashi, Nobuyuki Hokari, Osami Yokota, Shinsuke Kokubo, Tetsuo Sasada, Tsunemasa Nishijima, Toshifumi Sasao
  • Patent number: 7143583
    Abstract: A gas turbine combustor comprises a premixed combustion burner disposed on the periphery of a pilot burner, an approximately cylindrical combustor liner disposed on the downstream side of the premixed combustion burner, which defines a combustion chamber in the liner. The gas turbine combustor is characterized by further comprising flame stabilizers radially disposed at the exit of the premixed combustion burner, and a fuel injection means with which the pilot burner is provided injects at least one of gas fuel and liquid fuel, in which a plurality of air nozzles are provided which are located outside the pilot burner and inside the premixed combustion burner, and which spout out air into the combustion chamber. Adequate combustion can be accomplished with a combustor which is capable of using gas fuel and liquid fuel, and at the same time, NOx can be reduced.
    Type: Grant
    Filed: March 7, 2003
    Date of Patent: December 5, 2006
    Assignee: Hitachi, Ltd.
    Inventors: Akinori Hayashi, Shinichi Inage, Hiromi Koizumi, Isao Takehara, Kazuyuki Ito, Toshifumi Sasao, Hidetaro Murata
  • Publication number: 20060185368
    Abstract: A gas turbine system burning heavy-oil modified fuel and a method of operating the gas turbine system, which covers from a stage of modifying heavy oil and producing gas turbine fuel to a stage of operating a gas turbine, including startup, ordinary shutdown and emergency shutdown of the gas turbine. The gas turbine system burning heavy-oil modified fuel comprises a reactor for mixing heavy oil and water to cause reaction, thereby separating and removing a heavy component from the heavy oil, a gas-liquid separator for separating hydrocarbon gas and modified oil obtained in the reactor from each other, a gas turbine combustor for burning the hydrocarbon gas supplied from the gas-liquid separator, and a gas turbine driven by combustion gas produced in the gas turbine combustor. The system further comprises another line for extracting the hydrocarbon gas externally of a relevant system region.
    Type: Application
    Filed: February 23, 2006
    Publication date: August 24, 2006
    Inventors: Hirokazu Takahashi, Shinichi Inage, Kouji Nishida, Nobuyuki Hokari, Osami Yokota, Akinori Hayashi, Shinsuke Kokubo
  • Publication number: 20060057059
    Abstract: A heavy oil reforming system includes a reforming preheater raising the temperature of a mixed fluid comprising a high pressure heavy oil and high pressure steam up to a temperature for reforming reaction. The mixed fluid having been heated up to the temperature for reforming reaction is introduced into a reformer kept at the temperature for reforming reaction and thereby the heavy oil is reformed. This reforming system allows the attainment of a residence time of 1 to 10 min necessary for reforming in a uniform or nearly uniform temperature field, thereby implementing the manufacturing of reformed fuels from a large volume of heavy oil.
    Type: Application
    Filed: July 29, 2005
    Publication date: March 16, 2006
    Inventors: Koji Nishida, Nobuyuki Hokari, Shin-ichi Inage, Osami Yokota, Hirokazu Takahashi, Masahiko Yamagishi, Akinori Hayashi
  • Publication number: 20060042254
    Abstract: A combustor comprises a liquid fuel nozzle for injecting liquid fuel to a combustion chamber, and an air supply nozzle disposed around the liquid fuel nozzle and injecting air. The air supply nozzle is disposed such that air is injected from the air supply nozzle in a direction toward an axis of the liquid fuel nozzle. A space is formed around an outlet of the liquid fuel nozzle, through which the liquid fuel is injected from the liquid fuel nozzle to the combustion chamber, upstream of a distal end of the outlet in a direction in which the liquid fuel is injected. Carbonaceous deposits on surrounding surfaces of the outlet of the liquid fuel nozzle can be suppressed regardless of the operating conditions of a combustor.
    Type: Application
    Filed: August 24, 2005
    Publication date: March 2, 2006
    Inventors: Shouhei Yoshida, Yoshitaka Hirata, Hiroshi Inoue, Tomoya Murota, Toshifumi Sasao, Akinori Hayashi, Isao Takehara
  • Publication number: 20050040081
    Abstract: The invention is intended to produce high-pressure light fuel gas with good combustibility by contacting and reacting high-temperature, high-pressure water and heavy oil with each other in a contact-reaction unit to extract light oil components from the heavy oil and to remove metals. The high-temperature, high-pressure water and the heavy oil are introduced to the contact-reaction unit for contact and reaction with each other therein. Heavy oil components not dissolved in the high-temperature, high-pressure water are separated by precipitation from hydrocarbon gases and light oil components which are dissolved in the high-temperature, high-pressure water. The separated heavy oil components are burnt or incinerated without any further modification.
    Type: Application
    Filed: August 4, 2004
    Publication date: February 24, 2005
    Inventors: Hirokazu Takahashi, Shinichi Inage, Nobuyuki Hokari, Masahiko Yamagishi, Akinori Hayashi, Osami Yokota, Youji Ishibashi
  • Publication number: 20040035114
    Abstract: A gas turbine combustor comprises a premixed combustion burner disposed on the periphery of a pilot burner, an approximately cylindrical combustor liner disposed on the downstream side of the premixed combustion burner, which defines a combustion chamber in the liner. The gas turbine combustor is characterized by further comprising flame stabilizers radially disposed at the exit of the premixed combustion burner, and a fuel injection means with which the pilot burner is provided injects at least one of gas fuel and liquid fuel, in which a plurality of air nozzles are provided which are located outside the pilot burner and inside the premixed combustion burner, and which spout out air into the combustion chamber. Adequate combustion can be accomplished with a combustor which is capable of using gas fuel and liquid fuel, and at the same time, NOx can be reduced.
    Type: Application
    Filed: March 7, 2003
    Publication date: February 26, 2004
    Inventors: Akinori Hayashi, Shinichi Inage, Hiromi Koizumi, Isao Takehara, Kazuyuki Ito, Toshifumi Sasao, Hidetaro Murata