Patents by Inventor Akio Hanada

Akio Hanada has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12037668
    Abstract: A powder magnetic core containing a magnetic particle of an Fe-based Cr-containing amorphous alloy and an organic binding substance is provided as a powder magnetic core with a small loss and high initial permeability. The depth profile of the composition determined from the surface of the magnetic particle in the powder magnetic core has the following characteristics. (1) An oxygen-containing region with an O/Fe ratio of 0.1 or more can be defined from the surface of the magnetic particle, and the oxygen-containing region has a depth of 35 nm or less from the surface. (2) A carbon-containing region with a C/O ratio of 1 or more can be defined from the surface of the magnetic particle, and the carbon-containing region has a depth of 5 nm or less from the surface. (3) The oxygen-containing region has a Cr-concentrated portion with a bulk Cr ratio of more than 1.
    Type: Grant
    Filed: July 19, 2021
    Date of Patent: July 16, 2024
    Assignee: Alps Alpine Co., Ltd.
    Inventors: Akio Hanada, Koichi Fujita, Seiichi Abiko, Hisato Koshiba
  • Publication number: 20230207179
    Abstract: In a magnetic core including a core assembly having a structure that multiple thin strip blocks are arranged, the thin strip blocks being formed of multiple laminates of nanocrystalline thin strips made of a nanocrystal-containing alloy material, the thin strip block includes a fixedly joined portion in which the nanocrystalline thin strips adjacent to each other in a lamination direction are fixedly joined together. The fixedly joined portion may include side surfaces of the nanocrystalline thin strips and may be a laser welded portion.
    Type: Application
    Filed: February 22, 2023
    Publication date: June 29, 2023
    Inventors: Shokan YAMASHITA, Akio HANADA, Munemitsu ABE
  • Publication number: 20230208219
    Abstract: In a magnetic core including a core assembly formed of multiple arranged thin strip blocks, each of the thin strip blocks has a structure that multiple nanocrystalline thin strips having a bcc-Fe phase as a main phase are laminated one above another, and an iron loss in the nanocrystalline thin strip positioned at a center of the thin strip block in a thickness direction thereof is lower than an iron loss in the nanocrystalline thin strip positioned in a surface layer of the thin strip block. The nanocrystalline thin strip may be a heat-treated product of an amorphous thin strip made of an amorphous alloy material, and the thin strip block may include a fixedly joined portion in which the nanocrystalline thin strips adjacent to each other in a lamination direction are fixedly joined together.
    Type: Application
    Filed: February 22, 2023
    Publication date: June 29, 2023
    Inventors: Munemitsu ABE, Akio HANADA, Shokan YAMASHITA, Tatsuya OBA
  • Publication number: 20230208213
    Abstract: In a magnetic core including a laminated core in which multiple core thin strips are laminated, the magnetic core includes a cutting mark region formed by cutting tie sticks 212, connected to the core thin strips 511, in a lamination direction of the core thin strips 511, and the cutting mark region 51C is positioned on an inner side than outer peripheries of the core thin strips 511. The core thin strip 511 may include a portion made of a nanocrystal-containing alloy material that is obtained by nano-crystallizing an amorphous alloy material with heat treatment.
    Type: Application
    Filed: February 22, 2023
    Publication date: June 29, 2023
    Inventors: Munemitsu ABE, Akio HANADA, Shokan YAMASHITA, Tatsuya OBA
  • Publication number: 20210350962
    Abstract: A powder magnetic core containing a magnetic particle of an Fe-based Cr-containing amorphous alloy and an organic binding substance is provided as a powder magnetic core with a small loss and high initial permeability. The depth profile of the composition determined from the surface of the magnetic particle in the powder magnetic core has the following characteristics. (1) An oxygen-containing region with an O/Fe ratio of 0.1 or more can be defined from the surface of the magnetic particle, and the oxygen-containing region has a depth of 35 nm or less from the surface. (2) A carbon-containing region with a C/O ratio of 1 or more can be defined from the surface of the magnetic particle, and the carbon-containing region has a depth of 5 nm or less from the surface. (3) The oxygen-containing region has a Cr-concentrated portion with a bulk Cr ratio of more than 1.
    Type: Application
    Filed: July 19, 2021
    Publication date: November 11, 2021
    Inventors: Akio HANADA, Koichi FUJITA, Seiichi ABIKO, Hisato KOSHIBA
  • Publication number: 20170222260
    Abstract: A solid electrolyte powder includes ion-conductive LATP powder that is obtained by heating and melting raw materials at a predetermined temperature to prepare molten LATP mixture, cooling the molten LATP mixture to prepare a crystalline material having a NASICON structure, crushing the crystalline material to prepare crystal powder having a particle size of 1 ?m to 10 ?m, and performing a heat treatment on the crystal powder in air at a temperature of 800° C. to 1000° C. for a predetermined period of time.
    Type: Application
    Filed: April 19, 2017
    Publication date: August 3, 2017
    Inventors: Takashi HATANAI, Akio HANADA, Shunetsu SATO, Shin KINOUCHI, Mika SASAKI
  • Patent number: 8208231
    Abstract: A tunneling magnetic sensing element includes a laminate in which a pinned magnetic layer having a magnetization direction pinned, an insulating barrier layer, and a free magnetic layer having a magnetization direction variable with an external magnetic field are laminated in order from below. The insulating barrier layer is made of Mg—O. The free magnetic layer has a soft magnetic layer and an enhanced layer disposed between the soft magnetic layer and the insulating barrier layer to have a spin polarization ratio higher than the soft magnetic layer. An insertion magnetic layer made of one selected from Co—Fe—B, Co—B, Fe—B, and Co—Fe is inserted into the soft magnetic layer in a direction parallel to the interface of each layer constituting the laminate, and the soft magnetic layer is divided into multiple layers in a thickness direction through the insertion magnetic layer.
    Type: Grant
    Filed: November 12, 2009
    Date of Patent: June 26, 2012
    Assignee: Alps Electric Co., Ltd.
    Inventors: Kazumasa Nishimura, Hidekazu Kobayashi, Masamichi Saito, Yosuke Ide, Ryo Nakabayashi, Yoshihiro Nishiyama, Akio Hanada, Naoya Hasegawa
  • Patent number: 8054588
    Abstract: A tunnel magnetoresistive element includes a laminate including a pinned magnetic layer, an insulating barrier layer, and a free magnetic layer. The insulating barrier layer is composed of Ti—Mg—O or Ti—O. The free magnetic layer includes an enhancement sublayer, a first soft magnetic sublayer, a nonmagnetic metal sublayer, and a second soft magnetic sublayer. For example, the enhancement sublayer is composed of Co—Fe, the first soft magnetic sublayer and the second soft magnetic sublayer are composed of Ni—Fe, and the nonmagnetic metal sublayer is composed of Ta. The total thickness of the average thickness of the enhancement sublayer and the average thickness of the first soft magnetic sublayer is in the range of 25 to 80 angstroms. Accordingly, the tunneling magnetoresistive element can consistently have a higher rate of resistance change than before.
    Type: Grant
    Filed: February 11, 2011
    Date of Patent: November 8, 2011
    Assignee: Alps Electric Co., Ltd.
    Inventors: Kazumasa Nishimura, Ryo Nakabayashi, Yosuke Ide, Hasahiko Ishizone, Masamichi Saito, Naoya Hasegawa, Yoshihiro Nishiyana, Akio Hanada, Hidekezu Kobayashi
  • Patent number: 8009391
    Abstract: An underlying layer is composed of Co—Fe—B that is an amorphous magnetic material. Thus, the upper surface of the underlying layer can be taken as a lower shield layer-side reference position for obtaining a gap length (GL) between upper and lower shields, resulting in a narrower gap than before. In addition, since the underlying layer has an amorphous structure, the underlying layer does not adversely affect the crystalline orientation of individual layers to be formed thereon, and the surface of the underlying layer has good planarizability. Accordingly, PW50 (half-amplitude pulse width) and SN ratio can be improved more than before without causing a decrease in rate of change in resistance (? R/R) or the like, thereby achieving a structure suitable for increasing recording density.
    Type: Grant
    Filed: May 15, 2008
    Date of Patent: August 30, 2011
    Assignee: TDK Corporation
    Inventors: Kenichi Tanaka, Eiji Umetsu, Kazuaki Ikarashi, Kota Asatsuma, Norimasa Okanishi, Yoshihiro Nishiyama, Masamichi Saito, Yosuke Ide, Kazumasa Nishimura, Ryo Nakabayashi, Hidekazu Kobayashi, Akio Hanada, Naoya Hasegawa
  • Publication number: 20110129690
    Abstract: A tunnel magnetoresistive element includes a laminate including a pinned magnetic layer, an insulating barrier layer, and a free magnetic layer. The insulating barrier layer is composed of Ti—Mg—O or Ti—O. The free magnetic layer includes an enhancement sublayer, a first soft magnetic sublayer, a nonmagnetic metal sublayer, and a second soft magnetic sublayer. For example, the enhancement sublayer is composed of Co—Fe, the first soft magnetic sublayer and the second soft magnetic sublayer are composed of Ni—Fe, and the nonmagnetic metal sublayer is composed of Ta. The total thickness of the average thickness of the enhancement sublayer and the average thickness of the first soft magnetic sublayer is in the range of 25 to 80 angstroms. Accordingly, the tunneling magnetoresistive element can consistently have a higher rate of resistance change than before.
    Type: Application
    Filed: February 11, 2011
    Publication date: June 2, 2011
    Inventors: Kazumasa Nishimura, Ryo Nakabayashi, Yosuke Ide, Hasahiko Ishizone, Masamichi Saito, Naoya Hasegawa, Yoshihiro Nishiyana, Akio Hanada, Hidekezu Kobayashi
  • Publication number: 20100055501
    Abstract: A tunneling magnetic sensing element includes a laminate in which a pinned magnetic layer having a magnetization direction pinned, an insulating barrier layer, and a free magnetic layer having a magnetization direction variable with an external magnetic field are laminated in order from below. The insulating barrier layer is made of Mg—O. The free magnetic layer has a soft magnetic layer and an enhanced layer disposed between the soft magnetic layer and the insulating barrier layer to have a spin polarization ratio higher than the soft magnetic layer. An insertion magnetic layer made of one selected from Co—Fe—B, Co—B, Fe—B, and Co—Fe is inserted into the soft magnetic layer in a direction parallel to the interface of each layer constituting the laminate, and the soft magnetic layer is divided into multiple layers in a thickness direction through the insertion magnetic layer.
    Type: Application
    Filed: November 12, 2009
    Publication date: March 4, 2010
    Applicant: Alps Electric Co., Ltd.
    Inventors: Kazumasa Nishimura, Hidekazu Kobayashi, Masamichi Saito, Yosuke Ide, Ryo Nakabayashi, Yoshihiro Nishiyama, Akio Hanada, Naoya Hasegawa
  • Publication number: 20080285180
    Abstract: An underlying layer is composed of Co—Fe—B that is an amorphous magnetic material. Thus, the upper surface of the underlying layer can be taken as a lower shield layer-side reference position for obtaining a gap length (GL) between upper and lower shields, resulting in a narrower gap than before. In addition, since the underlying layer has an amorphous structure, the underlying layer does not adversely affect the crystalline orientation of individual layers to be formed thereon, and the surface of the underlying layer has good planarizability. Accordingly, PW50 (half-amplitude pulse width) and SN ratio can be improved more than before without causing a decrease in rate of change in resistance (? R/R) or the like, thereby achieving a structure suitable for increasing recording density.
    Type: Application
    Filed: May 15, 2008
    Publication date: November 20, 2008
    Inventors: Kenichi Tanaka, Eiji Umetsu, Kazuaki Ikarashi, Kota Asatsuma, Norimasa Okanishi, Yoshihiro Nishiyama, Masamichi Saito, Yosuke Ide, Kazumasa Nishimura, Ryo Nakabayashi, Hidekazu Kobayashi, Akio Hanada, Naoya Hasegawa
  • Publication number: 20080261082
    Abstract: A tunnel magnetoresistive element includes a laminate including a pinned magnetic layer, an insulating barrier layer, and a free magnetic layer. The insulating barrier layer is composed of Ti—Mg—O or Ti—O. The free magnetic layer includes an enhancement sublayer, a first soft magnetic sublayer, a nonmagnetic metal sublayer, and a second soft magnetic sublayer. For example, the enhancement sublayer is composed of Co—Fe, the first soft magnetic sublayer and the second soft magnetic sublayer are composed of Ni—Fe, and the nonmagnetic metal sublayer is composed of Ta. The total thickness of the average thickness of the enhancement sublayer and the average thickness of the first soft magnetic sublayer is in the range of 25 to 80 angstroms. Accordingly, the tunneling magnetoresistive element can consistently have a higher rate of resistance change than before.
    Type: Application
    Filed: October 3, 2007
    Publication date: October 23, 2008
    Inventors: Kazumasa Nishimura, Ryo Nakabayashi, Yosuke Ide, Masahiko Ishizone, Masamichi Saito, Naoya Hasegawa, Yoshihiro Nishiyama, Akio Hanada, Hidekazu Kobayashi