Patents by Inventor Akiomi Ujima

Akiomi Ujima has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9445487
    Abstract: An X-ray radiation device comprises a plurality of X-ray radiation units, each having an X-ray tube for generating an X-ray, a drive circuit for driving the X-ray tube, and a trunk line connected to the drive circuit, and a controller having a control circuit for controlling the X-ray radiation units. The trunk lines of the plurality of X-ray radiation units are connected in series to the control circuit so that the drive circuits of the plurality of X-ray radiation units are connected in parallel to the control circuit. Since the trunk lines of the plurality of X-ray radiation units are connected in series to the control circuit, the X-ray radiation units can be connected to each other and are not required to be connected one by one to the controller. This makes it possible to increase and decrease the number of units without complicating their wiring.
    Type: Grant
    Filed: February 7, 2013
    Date of Patent: September 13, 2016
    Assignee: HAMAMATSU PHOTONICS K.K.
    Inventors: Norimasa Kosugi, Naoki Okumura, Tatsuya Nakamura, Toru Fujita, Tomoyuki Okada, Akiomi Ujima
  • Patent number: 9349563
    Abstract: In an X-ray radiation source, a lid part is fastened to a main part with screws, so that an X-ray tube is secured to a housing while being pressed against an inner surface of the wall part a by a first circuit board. The X-ray tube can be secured stably within the housing by thus being held between the first circuit board and the wall part. The X-ray radiation source uses the first circuit board incorporated in the housing itself for pressing the X-ray tube. This makes it unnecessary to provide new members for pressing the X-ray tube and can prevent the device structure from becoming complicated.
    Type: Grant
    Filed: February 7, 2013
    Date of Patent: May 24, 2016
    Assignee: HAMAMATSU PHOTONICS K.K.
    Inventors: Norimasa Kosugi, Naoki Okumura, Tatsuya Nakamura, Toru Fujita, Tomoyuki Okada, Akiomi Ujima
  • Patent number: 9305969
    Abstract: A solid-state imaging device 1A includes a CCD-type solid-state imaging element 10 having an imaging plane 12 formed of M×N pixels that are two-dimensionally arrayed in M rows and N columns, N signal readout circuits 20 arranged on one end side in the column direction for each of the columns with respect to the imaging plane 12, and N signal readout circuits 30 arranged on the other end side in the column direction for each of the columns with respect to the imaging plane 12, a semiconductor element 50 for digital-converting and then sequentially outputting as serial signals electrical signals output from the signal readout circuits 20 for each of the columns, and a semiconductor element 60 for digital-converting and then sequentially outputting as serial signals electrical signals output from the signal readout circuits 30 for each of the columns.
    Type: Grant
    Filed: November 1, 2012
    Date of Patent: April 5, 2016
    Assignee: HAMAMATSU PHOTONICS K.K.
    Inventors: Motohiro Suyama, Akiomi Ujima, Kentaro Maeta, Hisanori Suzuki, Masaharu Muramatsu, Fumio Iwase
  • Patent number: 9054000
    Abstract: A solid-state imaging device 2A includes a CCD-type solid-state imaging element 10 having an imaging plane 12 formed of M×N pixels that are two-dimensionally arrayed in M rows and N columns and N signal readout circuits 20 arranged on one end side in the column direction for each of the columns with respect to the plane 12 and for outputting electrical signals according to the magnitudes of charges taken out of the respective columns, respectively, a C-MOS-type semiconductor element 50 for digital-converting and sequentially outputting as serial signals electrical signals output from the circuits 20 for each of the columns, a heat transfer member 80 having a main surface 81a and a back surface 81b, and a cooling block 84 provided on the surface 81b, and the semiconductor element 50 and the surface 81a of the heat transfer member 80 are bonded to each other.
    Type: Grant
    Filed: November 1, 2012
    Date of Patent: June 9, 2015
    Assignee: HAMAMATSU PHOTONICS K.K.
    Inventors: Motohiro Suyama, Akiomi Ujima, Kentaro Maeta, Hisanori Suzuki, Masaharu Muramatsu, Fumio Iwase
  • Publication number: 20150063548
    Abstract: In an X-ray radiation source, a lid part is fastened to a main part with screws, so that an X-ray tube is secured to a housing while being pressed against an inner surface of the wall part a by a first circuit board. The X-ray tube can be secured stably within the housing by thus being held between the first circuit board and the wall part. The X-ray radiation source uses the first circuit board incorporated in the housing itself for pressing the X-ray tube. This makes it unnecessary to provide new members for pressing the X-ray tube and can prevent the device structure from becoming complicated.
    Type: Application
    Filed: February 7, 2013
    Publication date: March 5, 2015
    Applicant: HAMAMATSU PHOTONICS K.K.
    Inventors: Norimasa Kosugi, Naoki Okumura, Tatsuya Nakamura, Toru Fujita, Tomoyuki Okada, Akiomi Ujima
  • Publication number: 20150030131
    Abstract: An X-ray radiation device comprises a plurality of X-ray radiation units, each having an X-ray tube for generating an X-ray, a drive circuit for driving the X-ray tube, and a trunk line connected to the drive circuit, and a controller having a control circuit for controlling the X-ray radiation units. The trunk lines of the plurality of X-ray radiation units are connected in series to the control circuit so that the drive circuits of the plurality of X-ray radiation units are connected in parallel to the control circuit. Since the trunk lines of the plurality of X-ray radiation units are connected in series to the control circuit, the X-ray radiation units can be connected to each other and are not required to be connected one by one to the controller. This makes it possible to increase and decrease the number of units without complicating their wiring.
    Type: Application
    Filed: February 7, 2013
    Publication date: January 29, 2015
    Inventors: Norimasa Kosugi, Naoki Okumura, Tatsuya Nakamura, Toru Fujita, Tomoyuki Okada, Akiomi Ujima