Patents by Inventor Akira Hirano

Akira Hirano has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9520725
    Abstract: A wireless power transfer system includes a power receiving device that receives transmission by wireless power transfer, a transmission device that has a transmission element that transmits transmission power to the power receiving device, the transmission device having a control mechanism that controls an oriented direction of the transmission element, and a positioning device that is connected communicably with the transmission device, the positioning device receiving with a plurality of antennas arranged adjacent to each other a positioning signal that is a wireless signal transmitted from the power receiving device, the positioning device having a positioning function that calculates a direction ? in which the power receiving device exists when seen from the positioning device itself and a position of the power receiving device, based on a phase difference between the received positioning signals.
    Type: Grant
    Filed: December 27, 2011
    Date of Patent: December 13, 2016
    Assignee: THE CHUGOKU ELECTRIC POWER CO., INC.
    Inventors: Shinya Masaoka, Katsuhiko Mito, Akira Hirano, Norihiro Okubo, Masaki Naito, Yasunori Takeuchi
  • Patent number: 9502606
    Abstract: A nitride semiconductor ultraviolet light-emitting element is provided with: an underlying structure portion including a sapphire (0001) substrate and an AlN layer formed on the substrate; and a light-emitting element structure portion including an n-type cladding layer of an n-type AlGaN based semiconductor layer, an active layer having an AlGaN based semiconductor layer, and a p-type cladding layer of a p-type AlGaN based semiconductor layer, formed on the underlying structure portion. The (0001) surface of the substrate is inclined at an off angle which is equal to or greater than 0.6° and is equal to or smaller than 3.0°, and an AlN molar fraction of the n-type cladding layer is equal to or higher than 50%.
    Type: Grant
    Filed: April 27, 2016
    Date of Patent: November 22, 2016
    Assignee: SOKO KAGAKU CO., LTD.
    Inventors: Cyril Pernot, Akira Hirano
  • Publication number: 20160319459
    Abstract: A surface of a sapphire (0001) substrate is processed to form recesses and protrusions so that protrusion tops are flat and a given plane-view pattern is provided. An initial-stage AlN layer is grown on the surface of the sapphire (0001) substrate having recesses and protrusions by performing a C+ orientation control so that a C+ oriented AlN layer is grown on flat surfaces of the protrusion tops, excluding edges, in such a thickness that the recesses are not completely filled and the openings of the recesses are not closed. An AlxGayN(0001) layer (1?x>0, x+y=1) is epitaxially grown on the initial-stage AlN layer by a lateral overgrowth method. The recesses are covered with the AlxGayN(0001) layer laterally overgrown from above the protrusion tops. Thus, an template for epitaxial growth having a fine and flat surface and a reduced threading dislocation density is produced.
    Type: Application
    Filed: July 8, 2016
    Publication date: November 3, 2016
    Applicant: Soko Kagaku Co., Ltd.
    Inventors: Hiroshi Amano, Satoshi Kamiyama, Myunghee Kim, Cyril Pernot, Akira Hirano
  • Patent number: 9479282
    Abstract: An optical communication apparatus, in the sending side, distributes client signals according to destinations and a communication capacity of each destination, electrical-to-optical converts the distributed signals to optical signals having different center frequencies, and multiplexes the optical signals to output, and in the receiving side, the optical communication apparatus divides the wavelength division multiplexed signal to each wavelength (for each sending source), optical-to-electrical converts the divided optical signals to electrical signals, and multiplexes the electrical signals to output. An add/drop port of an optical route switching apparatus includes an input/output port to the optical communication apparatus, and an optical frequency bandwidth is variable according to an optical spectrum width of the optical signal. A network is constructed by using the optical communication apparatus and the optical route switching apparatus.
    Type: Grant
    Filed: April 26, 2012
    Date of Patent: October 25, 2016
    Assignee: NIPPON TELEGRAPH AND TELEPHONE CORPORATION
    Inventors: Masahiko Jinno, Hidehiko Takara, Kazushige Yonenaga, Akira Hirano, Yoshiaki Sone
  • Patent number: 9450157
    Abstract: An ultraviolet light emitting device having high quality and high reliability is provided by preventing deterioration of electrical characteristics which is associated with an ultraviolet light emission operation and caused by a sealing resin. The ultraviolet light emitting device is an ultraviolet light emitting device including: an ultraviolet light emitting element (2) formed of a nitride semiconductor; and an ultraviolet-transparent sealing resin (3) covering the ultraviolet light emitting element (2), wherein at least a specific portion (3a) of the sealing resin (3), which is in contact with pad electrodes (18) and (17) of the ultraviolet light emitting element (2), is a first type amorphous fluororesin, and a terminal functional group of a polymer or a copolymer that forms the first type amorphous fluororesin is a nonreactive terminal functional group which is not bondable to a metal that forms the pad electrodes (16) and (17).
    Type: Grant
    Filed: April 17, 2014
    Date of Patent: September 20, 2016
    Assignees: SOKO KAGAKU CO., LTD., ASAHI GLASS COMPANY, LIMITED
    Inventors: Kiho Yamada, Shoko Nagai, Yuta Furusawa, Akira Hirano, Masamichi Ippommatsu, Ko Aosaki, Naoki Morishima
  • Publication number: 20160265138
    Abstract: The present invention provides a method for producing a template for epitaxial growth, the method including: a surface treatment step of dispersing Ga atoms on a surface of a sapphire substrate; and an AlN growth step of epitaxially growing an AlN layer on the sapphire substrate, wherein in a Ga concentration distribution in a depth direction perpendicular to the surface of the sapphire substrate in an internal region of the AlN layer excluding a near-surface region up to a depth of 100 nm from the surface of the AlN layer, which is obtained by secondary ion mass spectrometry, a position in the depth direction where the Ga concentration takes the maximum value is present in a near-interface region located between the interface of the sapphire substrate and a position at 400 nm spaced apart from the interface to the AlN layer side, and the maximum value of the Ga concentration is 3×1017 atoms/cm3 or more and 2×1020 atoms/cm3 or less.
    Type: Application
    Filed: August 29, 2014
    Publication date: September 15, 2016
    Applicant: SOKO KAGAKU CO., LTD.
    Inventors: CYRIL PERNOT, AKIRA HIRANO
  • Publication number: 20160240727
    Abstract: A nitride semiconductor ultraviolet light-emitting element is provided with: an underlying structure portion including a sapphire (0001) substrate and an AlN layer formed on the substrate; and a light-emitting element structure portion including an n-type cladding layer of an n-type AlGaN based semiconductor layer, an active layer having an AlGaN based semiconductor layer, and a p-type cladding layer of a p-type AlGaN based semiconductor layer, formed on the underlying structure portion. The (0001) surface of the substrate is inclined at an off angle which is equal to or greater than 0.6° and is equal to or smaller than 3.0°, and an AlN molar fraction of the n-type cladding layer is equal to or higher than 50%.
    Type: Application
    Filed: April 27, 2016
    Publication date: August 18, 2016
    Applicant: SOKO KAGAKU CO., LTD.
    Inventors: CYRIL PERNOT, AKIRA HIRANO
  • Patent number: 9412586
    Abstract: A surface of a sapphire (0001) substrate is processed to form recesses and protrusions so that protrusion tops are flat and a given plane-view pattern is provided. An initial-stage AlN layer is grown on the surface of the sapphire (0001) substrate having recesses and protrusions by performing a C+ orientation control so that a C+ oriented AlN layer is grown on flat surfaces of the protrusion tops, excluding edges, in such a thickness that the recesses are not completely filled and the openings of the recesses are not closed. An AlxGayN(0001) layer (1?x>0, x+y=1) is epitaxially grown on the initial-stage AlN layer by a lateral overgrowth method. The recesses are covered with the AlxGayN(0001) layer laterally overgrown from above the protrusion tops. Thus, an template for epitaxial growth having a fine and flat surface and a reduced threading dislocation density is produced.
    Type: Grant
    Filed: December 25, 2009
    Date of Patent: August 9, 2016
    Assignee: SOKO KAGAKU CO., LTD.
    Inventors: Hiroshi Amano, Satoshi Kamiyama, Myunghee Kim, Cyril Pernot, Akira Hirano
  • Publication number: 20160218259
    Abstract: An ultraviolet light emitting device having high quality and high reliability is provided by preventing deterioration of electrical characteristics which is associated with an ultraviolet light emission operation and caused by a sealing resin.
    Type: Application
    Filed: September 10, 2014
    Publication date: July 28, 2016
    Applicant: Soko Kagaku. Co., Ltd.
    Inventors: Kiho Yamada, Shoko Nagai, Yuta Furusawa, Akira Hirano, Masamichi Ippommatsu
  • Patent number: 9356192
    Abstract: A nitride semiconductor ultraviolet light-emitting element is provided with: an underlying structure portion including a sapphire (0001) substrate and an AlN layer formed on the substrate; and a light-emitting element structure portion including an n-type cladding layer of an n-type AlGaN based semiconductor layer, an active layer having an AlGaN based semiconductor layer, and a p-type cladding layer of a p-type AlGaN based semiconductor layer, formed on the underlying structure portion. The (0001) surface of the substrate is inclined at an off angle which is equal to or greater than 0.6° and is equal to or smaller than 3.0°, and an AlN molar fraction of the n-type cladding layer is equal to or higher than 50%.
    Type: Grant
    Filed: August 9, 2011
    Date of Patent: May 31, 2016
    Assignee: SOKO KAGAKU CO., LTD.
    Inventors: Cyril Pernot, Akira Hirano
  • Patent number: 9336080
    Abstract: A transmission system includes: an error correction encoding agent which converts an input data sequence into an encoded data sequence constituted of an error correction code and coded data; a data distribution agent which divides the encoded data sequence from the error correction encoding agent, in a predetermined processing unit and send them to a plurality of transmission routes; a data combining agent which combines signal sequences from the respective transmission routes and restores the encoded data sequence; an error correction decoding agent which applies error correction to and decodes the encoded data sequence from the data combining agent and outputs the input data sequence; and an agent for configuration in which a redundancy in the error correction encoding agent and a degree of splitting of the encoded data sequence in the data distribution agent are set.
    Type: Grant
    Filed: July 4, 2012
    Date of Patent: May 10, 2016
    Assignee: NIPPON TELEGRAPH AND TELEPHONE CORPORATION
    Inventors: Akira Hirano, Mitsunori Fukutoku, Yoshiaki Kisaka, Yoshiaki Sone, Akihiro Kadohata, Takafumi Tanaka
  • Publication number: 20150350025
    Abstract: Accommodation design for wavelength and sub-? paths in a communication network is performed. If sub-? path accommodation is possible according to search for a wavelength path present in a single-hop logical route, the accommodation in the wavelength path is executed. If sub-? path accommodation is possible according to search for a wavelength path present in a multi-hop logical route, a logical route is selected based on the wavelength path and the sub-? path is accommodated in the wavelength path. Additionally, each physical route suitable for the sub-? path accommodation is searched for. If the route can accommodate a wavelength path set in a single-hop logical route by available wavelength allocation, the sub-? path is accommodated in the wavelength path. Furthermore, routes in consideration of overlapping of nodes, pipelines, and links and operation rate are selected based on information about the start and end nodes of each of redundant routes.
    Type: Application
    Filed: January 31, 2014
    Publication date: December 3, 2015
    Applicant: NIPPON TELEGRAPH AND TELEPHONE CORPORATION
    Inventors: Akihiro KADOHATA, Akira HIRANO, Atsushi WATANABE, Fumikazu INUZUKA, Takafumi TANAKA
  • Patent number: 9178645
    Abstract: A wavelength path reallocation method in a path reallocation apparatus for reallocating a wavelength path set in a communication network, including: a wavelength path designing step in which a wavelength path designing unit designs a reallocation destination wavelength path by performing calculation such that the number of use frequency regions in the communication network becomes smaller than a corresponding value before reallocation; and a wavelength path setting step in which a wavelength path setting unit changes a reallocation target wavelength path to the reallocation destination wavelength path by using free wavelength.
    Type: Grant
    Filed: October 21, 2011
    Date of Patent: November 3, 2015
    Assignee: NIPPON TELEGRAPH AND TELEPHONE CORPORATION
    Inventors: Akihiro Kadohata, Akira Hirano, Yoshiaki Sone, Yukio Tsukishima, Takafumi Tanaka
  • Patent number: 9154257
    Abstract: A frequency assignment method for selecting a frequency width used on a route connecting between a start point and an end point when the start point and the end point of an optical signal are supplied in a photonic network including an optical node that includes an optical switch for switching the optical signal without electrically terminating the optical signal is disclosed. The frequency assignment method includes steps of: obtaining a correlation amount of use state of wavelength or frequency between adjacent links by referring to a route calculation result; determining a fixed frequency width or variable frequency width to be set for a communication route based on the correlation amount; and assigning the fixed frequency width or the variable frequency width on the route.
    Type: Grant
    Filed: October 24, 2011
    Date of Patent: October 6, 2015
    Assignee: NIPPON TELEGRAPH AND TELEPHONE CORPORATION
    Inventors: Akira Hirano, Yoshiaki Sone, Akihiro Kadohata, Takafumi Tanaka, Shinji Matsuoka
  • Publication number: 20150243856
    Abstract: An ultraviolet light emitting device having high quality and high reliability is provided by preventing deterioration of electrical characteristics which is associated with an ultraviolet light emission operation and caused by a sealing resin. The ultraviolet light emitting device is an ultraviolet light emitting device including: an ultraviolet light emitting element (2) formed of a nitride semiconductor; and an ultraviolet-transparent sealing resin (3) covering the ultraviolet light emitting element (2), wherein at least a specific portion (3a) of the sealing resin (3), which is in contact with pad electrodes (18) and (17) of the ultraviolet light emitting element (2), is a first type amorphous fluororesin, and a terminal functional group of a polymer or a copolymer that forms the first type amorphous fluororesin is a nonreactive terminal functional group which is not bondable to a metal that forms the pad electrodes (16) and (17).
    Type: Application
    Filed: April 17, 2014
    Publication date: August 27, 2015
    Applicants: Asahi Glass Company, Limited, Soko Kagaku Co., Ltd
    Inventors: Kiho Yamada, Shoko Nagai, Yuta Furusawa, Akira Hirano, Masamichi Ippommatsu, Ko Aosaki, Naoki Morishima
  • Patent number: 9112115
    Abstract: An active layer including an AlGaN semiconductor layer having a band gap energy of 3.4 eV or higher and a p-type cladding layer configured of a p-type AlGaN semiconductor layer and located above the active layer are formed in a first region on the n-type cladding layer, the first region being in a plane parallel to a surface of the n-cladding layer configured of an n-type AlGaN semiconductor layer. An n-electrode metal layer making Ohmic contact with the n-type cladding layer is formed on an adjacent region to the first region in a second region which is a region other than the first region on the n-type cladding layer. A first reflective metal layer reflecting ultraviolet light emitted from the active layer is formed on a surface of the n-type cladding layer in the second region other than the adjacent region. The n-electrode metal layer is arranged between the first region and a region in which the first reflective metal layer contacts the surface of the n-type cladding layer.
    Type: Grant
    Filed: April 21, 2011
    Date of Patent: August 18, 2015
    Assignee: SOKO KAGAKU CO., LTD.
    Inventors: Tetsuhiko Inazu, Cyril Pernot, Akira Hirano
  • Patent number: 8964581
    Abstract: A bandwidth variable communication method is provided that enables effective use of frequency bandwidths in which the bit rate is constant in every optical path. The bandwidth variable communication method includes, when a network management apparatus sets or changes an optical path that passes through plural communication apparatuses, measuring or obtaining an optical signal quality deterioration amount in a route of the optical path; selecting a modulation format in which a spectrum bandwidth is the narrowest from among modulation formats by which transmission is available on conditions of the optical signal quality deterioration amount and a desired bit rate B (bit/s); and exchanging control information between the network management apparatus and a control unit of each communication apparatus on the optical path route. A bandwidth variable communication apparatus receives the control information, and changes a passband based on the received control information.
    Type: Grant
    Filed: September 13, 2010
    Date of Patent: February 24, 2015
    Assignee: Nippon Telegraph and Telephone Corporation
    Inventors: Hidehiko Takara, Masahiko Jinno, Atsushi Watanabe, Kozicki Bartlomiej, Yoshiaki Sone, Akira Hirano, Takafumi Tanaka
  • Publication number: 20140354052
    Abstract: Performing power transfer to a plurality of power receiving devices, a power transmission device allocates one of a plurality of channels to perform wireless power transfer to a power receiving device in response to a power transmission request transmitted from the power receiving device designating one or more of the plurality of the channels having different frequencies. In a case where a power transmission request using the first channel is received from a second power receiving device, the device stops power transfer to the first power receiving device using the first channel, starts power transfer to the first power receiving device using a channel other than the first channel and starts power transfer to the second power receiving device using the first channel.
    Type: Application
    Filed: December 27, 2011
    Publication date: December 4, 2014
    Applicant: THE CHUGOKU ELECTRIC POWER CO., INC.
    Inventors: Shinya Masaoka, Katsuhiko Mito, Akira Hirano, Norihiro Okubo, Masaki Naito
  • Publication number: 20140327323
    Abstract: A wireless power transfer system includes a power receiving device that receives transmission by wireless power transfer, a transmission device that has a transmission element that transmits transmission power to the power receiving device, the transmission device having a control mechanism that controls an oriented direction of the transmission element, and a positioning device that is connected communicably with the transmission device, the positioning device receiving with a plurality of antennas arranged adjacent to each other a positioning signal that is a wireless signal transmitted from the power receiving device, the positioning device having a positioning function that calculates a direction ? in which the power receiving device exists when seen from the positioning device itself and a position of the power receiving device, based on a phase difference between the received positioning signals.
    Type: Application
    Filed: December 27, 2011
    Publication date: November 6, 2014
    Applicant: THE CHUGOKU ELECTRIC POWER CO., INC.
    Inventors: Shinya Masaoka, Katsuhiko Mito, Akira Hirano, Norihiro Okubo, Masaki Naito, Yasunori Takeuchi
  • Publication number: 20140270776
    Abstract: An optical communication apparatus, in the sending side, distributes client signals according to destinations and a communication capacity of each destination, electrical-to-optical converts the distributed signals to optical signals having different center frequencies, and multiplexes the optical signals to output, and in the receiving side, the optical communication apparatus divides the wavelength division multiplexed signal to each wavelength (for each sending source), optical-to-electrical converts the divided optical signals to electrical signals, and multiplexes the electrical signals to output. An add/drop port of an optical route switching apparatus includes an input/output port to the optical communication apparatus, and an optical frequency bandwidth is variable according to an optical spectrum width of the optical signal. A network is constructed by using the optical communication apparatus and the optical route switching apparatus.
    Type: Application
    Filed: April 26, 2012
    Publication date: September 18, 2014
    Applicant: NIPPON TELEGRAPH AND TELEPHONE CORPORATION
    Inventors: Masahiko Jinno, Hidehiko Takara, Kazushige Yonenaga, Akira Hirano, Yoshiaki Sone