Patents by Inventor Akira Ohtomo

Akira Ohtomo has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20080245297
    Abstract: A container of a material supply apparatus is configured of a crucible and an orifice. The crucible has a cylindrical shape, a rectangular-column shape or the like, and is hollow. Heat sources such as heaters are disposed around the crucible. The orifice including an opening is provided on a side of the crucible in a material element supplying direction. The orifice includes a pipe portion that extends in the material element supplying direction. The opening is formed on a tip of the pipe portion. An opening area of the pipe portion is formed to become gradually narrower towards the material element supplying side, namely in a direction of the opening.
    Type: Application
    Filed: March 28, 2008
    Publication date: October 9, 2008
    Applicant: ROHM CO., LTD.
    Inventors: Ken Nakahara, Hiroyuki Yuji, Kentaro Tamura, Shunsuke Akasaka, Masashi Kawasaki, Akira Ohtomo, Atsushi Tsukazaki
  • Publication number: 20080187776
    Abstract: Provided is a multilayer substrate having the configuration in which a multilayer film is formed on a principal surface opposite to a principal surface in the oxide-thin-film lamination direction in a translucent substrate. The multilayer film is formed by sequentially laminating a dielectric film, Au (gold) film, and oxide film in this order from the translucent substrate. On the principal surface opposite to the principal surface on which the oxide thin film is disposed, the multilayer film containing the Au film is formed, the Au film can reflect and block the excessive infrared light from a substrate holder or a heat source at the time of growth. As a result, temperature can be accurately measured.
    Type: Application
    Filed: February 6, 2008
    Publication date: August 7, 2008
    Applicant: ROHM CO., LTD.
    Inventors: Ken Nakahara, Hiroyuki Yuji, Kentaro Tamura, Shunsuke Akasaka, Yoshio Nishimoto, Masashi Kawasaki, Akira Ohtomo, Atsushi Tsukazaki
  • Publication number: 20080118769
    Abstract: There is provided a method of manufacturing a thin film, in which not only high crystallinity and surface flatness can be realized but also dopant doping can be performed at high concentration. The method includes a low temperature highly doped layer growing step of performing dopant doping while growing the thin film at a given first temperature; an annealing step of interrupting the growth of the thin film and annealing the thin film at a given second temperature higher than the first temperature; and a high temperature lowly doped layer growing step of growing the thin film at the second temperature.
    Type: Application
    Filed: September 10, 2004
    Publication date: May 22, 2008
    Applicant: TOHOKU UNIVERSITY
    Inventors: Masashi Kawasaki, Akira Ohtomo, Tomoaki Fukumura, Atsushi Tsukazaki, Makoto Ohtani
  • Patent number: 7095067
    Abstract: The present invention provides a semicondctor device that includes a conductor comprised of first and second layers of perovskite that have different stoichiometric compositions. The conductors provide a good template for the formation of dielectric layers thereon and are resistant to oxidizing environments used in semiconductor processing.
    Type: Grant
    Filed: May 27, 2003
    Date of Patent: August 22, 2006
    Assignee: Lucent Technologies Inc.
    Inventors: Harold Y. Hwang, Akira Ohtomo, David Muller
  • Patent number: 6878962
    Abstract: The present invention provides a high quality thin film comparable to a bulk single crystal and providres a semiconductor device with superior characteristics. A channel layer 11, for example, is formed of a semiconductor such as zinc oxide ZnO or the like. A source 12, a drain 13, a gate 14 and a gate insulating layer 15 are formed on the channel layer 111 to form an FET. For a substrate 16, a proper material is selected depending on a thin film material of the channel layer 11 in consideration of compatibility of both lattice constants. For example, if ZnO is used for the semiconductor of the channel layer as a base material, ScAlMgO4 or the like can be used for the substrate 16.
    Type: Grant
    Filed: March 22, 2000
    Date of Patent: April 12, 2005
    Assignee: Japan Science and Technology Corp.
    Inventors: Masashi Kawasaki, Hideo Ohno, Akira Ohtomo
  • Publication number: 20040238861
    Abstract: The present invention provides a semicondctor device that includes a conductor comprised of first and second layers of perovskite that have different stoichiometric compositions. The conductors provide a good template for the formation of dielectric layers thereon and are resistant to oxidizing environments used in semiconductor processing.
    Type: Application
    Filed: May 27, 2003
    Publication date: December 2, 2004
    Applicant: Lucent Technologies Inc.
    Inventors: Harold Y. Hwang, Akira Ohtomo, David Muller
  • Patent number: 6057561
    Abstract: A ZnO thin film is fabricated on the c-surface of a sapphire substrate through use of a laser molecular beam epitaxy (MBE) method-which is effective for epitaxial growth of an oxide thin film through control at an atomic level. The thus-formed ZnO thin film has a considerably high crystallinity; the half width of an X-ray rocking curve was 0.06.degree.. The thin film is of an n-type and has a carrier density of 4.times.10.sup.17 /cm.sup.3. The thin film fabricated in a state in which oxygen partial pressure is held constant at 10.sup.-6 Torr has a structure in which hexagon-shaped nanocrystals of uniform size are close-packed, reflecting the crystal behavior of a wurtzite type. Since in each nanocrystal there is observed a spiral structure formed by steps of a unit cell height (0.5 nm), the nanocrystals are considered to grow in a thermodynamically equilibrated state. The lateral size of the nanocrystal can be controlled within the range of approximately 50 to 250 nm.
    Type: Grant
    Filed: February 27, 1998
    Date of Patent: May 2, 2000
    Assignee: Japan Science and Technology Corporation
    Inventors: Masashi Kawasaki, Hideomi Koinuma, Akira Ohtomo, Yusaburo Segawa, Takashi Yasuda
  • Patent number: 4789781
    Abstract: A scanning electron microscope includes a heater coil which is arranged around a sample, an electron beam which is radiated when the sample is heated, and a secondary electron generated from the sample which is attracted to a photo multiplier. In this electron microscope, a shield plate is provided having an extracting hole for extracting the secondary electron outside of the heat coil in such a manner that the extracting hole is aligned with a light axis of the electron beam. The shield plate is connected to a power source which supplies a variable voltage so that a desired voltage can be applied to the shield plate so as to shield thermal electrons.
    Type: Grant
    Filed: March 16, 1987
    Date of Patent: December 6, 1988
    Assignee: Director-General of Agency of Industrial Science and Technology
    Inventors: Masaki Kitagawa, Akira Ohtomo, Teruo Fujimoto