Patents by Inventor Akira Owatari

Akira Owatari has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11566339
    Abstract: A plating method capable of controlling a concentration of an additive within a proper range during plating of a substrate is disclosed. The plating method includes: disposing an anode and a substrate, having a via-hole formed in a surface thereof, so as to face each other in a plating solution containing an additive; applying a voltage between the anode and the substrate for filling the via-hole with metal; measuring the voltage applied to the substrate; calculating an amount of change in the voltage per predetermined time; and adjusting a concentration of the additive in the plating solution to keep the amount of change in the voltage within a predetermined control range.
    Type: Grant
    Filed: February 4, 2021
    Date of Patent: January 31, 2023
    Assignee: EBARA CORPORATION
    Inventors: Yusuke Tamari, Akira Owatari, Mizuki Nagai, Shingo Yasuda
  • Publication number: 20220228285
    Abstract: Provided are a plating method, an insoluble anode and a plating apparatus capable of reducing consumption of an additive in a plating solution, when plating a substrate including a via or a hole for forming a through electrode. The plating method includes the steps of preparing a substrate including a via or a hole for forming a through electrode, preparing a plating solution tank that is divided, by a diaphragm, into an anode tank in which an insoluble anode is disposed and a cathode tank in which the substrate is disposed, and electroplating the substrate with an anode current density when plating the substrate in the plating solution tank being equal to or more than 0.4 ASD and equal to or less than 1.4 ASD.
    Type: Application
    Filed: May 13, 2020
    Publication date: July 21, 2022
    Inventors: Hiroyuki Kanda, Naoki Shimomura, Mizuki Nagai, Shingo Yasuda, Akira Owatari
  • Publication number: 20210164125
    Abstract: A plating method capable of controlling a concentration of an additive within a proper range during plating of a substrate is disclosed. The plating method includes: disposing an anode and a substrate, having a via-hole formed in a surface thereof, so as to face each other in a plating solution containing an additive; applying a voltage between the anode and the substrate for filling the via-hole with metal; measuring the voltage applied to the substrate; calculating an amount of change in the voltage per predetermined time; and adjusting a concentration of the additive in the plating solution to keep the amount of change in the voltage within a predetermined control range.
    Type: Application
    Filed: February 4, 2021
    Publication date: June 3, 2021
    Inventors: Yusuke Tamari, Akira Owatari, Mizuki Nagai, Shingo Yasuda
  • Patent number: 10941504
    Abstract: A plating method capable of controlling a concentration of an additive within a proper range during plating of a substrate is disclosed. The plating method includes: disposing an anode and a substrate, having a via-hole formed in a surface thereof, so as to face each other in a plating solution containing an additive; applying a voltage between the anode and the substrate for filling the via-hole with metal; measuring the voltage applied to the substrate; calculating an amount of change in the voltage per predetermined time; and adjusting a concentration of the additive in the plating solution to keep the amount of change in the voltage within a predetermined control range.
    Type: Grant
    Filed: April 9, 2019
    Date of Patent: March 9, 2021
    Assignee: EBARA CORPORATION
    Inventors: Yusuke Tamari, Akira Owatari, Mizuki Nagai, Shingo Yasuda
  • Publication number: 20190233967
    Abstract: A plating method capable of controlling a concentration of an additive within a proper range during plating of a substrate is disclosed. The plating method includes: disposing an anode and a substrate, having a via-hole formed in a surface thereof, so as to face each other in a plating solution containing an additive; applying a voltage between the anode and the substrate for filling the via-hole with metal; measuring the voltage applied to the substrate; calculating an amount of change in the voltage per predetermined time; and adjusting a concentration of the additive in the plating solution to keep the amount of change in the voltage within a predetermined control range.
    Type: Application
    Filed: April 9, 2019
    Publication date: August 1, 2019
    Inventors: Yusuke TAMARI, Akira OWATARI, Mizuki NAGAI, Shingo YASUDA
  • Publication number: 20190211468
    Abstract: A method of plating a substrate, such as a wafer, by applying a voltage between the substrate and an anode is disclosed. The plating method includes: preparing a substrate having a recess formed in a surface thereof, a conductive layer being formed in at least a part of the recess; placing an insoluble anode and the substrate in contact with a copper sulfate plating solution containing an additive; applying a predetermined plating voltage between the substrate and the insoluble anode by a plating power source to plate the substrate; and shutting off a reverse electric current, which flows from the insoluble anode to the substrate via the plating power source, by a diode disposed between the insoluble anode and the substrate when the predetermined plating voltage is not applied.
    Type: Application
    Filed: March 14, 2019
    Publication date: July 11, 2019
    Inventors: Shingo YASUDA, Akira OWATARI
  • Patent number: 10294580
    Abstract: A plating method capable of controlling a concentration of an additive within a proper range during plating of a substrate is disclosed. The plating method includes: disposing an anode and a substrate, having a via-hole formed in a surface thereof, so as to face each other in a plating solution containing an additive; applying a voltage between the anode and the substrate for filling the via-hole with metal; measuring the voltage applied to the substrate; calculating an amount of change in the voltage per predetermined time; and adjusting a concentration of the additive in the plating solution to keep the amount of change in the voltage within a predetermined control range.
    Type: Grant
    Filed: January 14, 2015
    Date of Patent: May 21, 2019
    Assignee: EBARA CORPORATION
    Inventors: Yusuke Tamari, Akira Owatari, Mizuki Nagai, Shingo Yasuda
  • Patent number: 10294581
    Abstract: A method of plating a substrate, such as a wafer, by applying a voltage between the substrate and an anode is disclosed. The plating method includes: preparing a substrate having a recess formed in a surface thereof, a conductive layer being formed in at least a part of the recess; placing an insoluble anode and the substrate in contact with a copper sulfate plating solution containing an additive; applying a predetermined plating voltage between the substrate and the insoluble anode by a plating power source to plate the substrate; and shutting off a reverse electric current, which flows from the insoluble anode to the substrate via the plating power source, by a diode disposed between the insoluble anode and the substrate when the predetermined plating voltage is not applied.
    Type: Grant
    Filed: October 1, 2015
    Date of Patent: May 21, 2019
    Assignee: EBARA CORPORATION
    Inventors: Shingo Yasuda, Akira Owatari
  • Patent number: 9708724
    Abstract: An anode unit capable of forming a metal film having a uniform thickness on a substrate is disclosed. The anode unit includes an anode, a first feeding portion connected to a central portion of the anode, a second feeding portion located on a central axis of the anode and located away from the anode, and arms extending radially from the second feeding portion. The arms are connected to a periphery of the anode.
    Type: Grant
    Filed: February 23, 2015
    Date of Patent: July 18, 2017
    Assignee: Ebara Corporation
    Inventors: Junichiro Tsujino, Tsutomu Nakada, Yusuke Tamari, Mitsutoshi Yahagi, Akira Owatari
  • Publication number: 20160097141
    Abstract: A method of plating a substrate, such as a wafer, by applying a voltage between the substrate and an anode is disclosed. The plating method includes: preparing a substrate having a recess formed in a surface thereof, a conductive layer being formed in at least a part of the recess; placing an insoluble anode and the substrate in contact with a copper sulfate plating solution containing an additive; applying a predetermined plating voltage between the substrate and the insoluble anode by a plating power source to plate the substrate; and shutting off a reverse electric current, which flows from the insoluble anode to the substrate via the plating power source, by a diode disposed between the insoluble anode and the substrate when the predetermined plating voltage is not applied.
    Type: Application
    Filed: October 1, 2015
    Publication date: April 7, 2016
    Inventors: Shingo YASUDA, Akira OWATARI
  • Publication number: 20150275390
    Abstract: An anode unit capable of forming a metal film having a uniform thickness on a substrate is disclosed. The anode unit includes an anode, a first feeding portion connected to a central portion of the anode, a second feeding portion located on a central axis of the anode and located away from the anode, and arms extending radially from the second feeding portion. The arms are connected to a periphery of the anode.
    Type: Application
    Filed: February 23, 2015
    Publication date: October 1, 2015
    Inventors: Junichiro TSUJINO, Tsutomu NAKADA, Yusuke TAMARI, Mitsutoshi YAHAGI, Akira OWATARI
  • Publication number: 20150203983
    Abstract: A plating method capable of controlling a concentration of an additive within a proper range during plating of a substrate is disclosed. The plating method includes: disposing an anode and a substrate, having a via-hole formed in a surface thereof, so as to face each other in a plating solution containing an additive; applying a voltage between the anode and the substrate for filling the via-hole with metal; measuring the voltage applied to the substrate; calculating an amount of change in the voltage per predetermined time; and adjusting a concentration of the additive in the plating solution to keep the amount of change in the voltage within a predetermined control range.
    Type: Application
    Filed: January 14, 2015
    Publication date: July 23, 2015
    Inventors: Yusuke TAMARI, Akira OWATARI, Mizuki NAGAI, Shingo YASUDA
  • Publication number: 20140299476
    Abstract: An electroplating method is disclosed. The method includes preparing a substrate having via holes in a surface thereof, performing a pretreatment of the substrate surface by immersing the substrate in a pretreatment liquid containing a plating suppressor to adsorb the plating suppressor onto the substrate surface, immersing the pretreated substrate in a plating solution containing a plating suppressor and a plating accelerator to replace the pretreatment liquid, attached to the substrate surface including interior surfaces of the via holes, with the plating solution, and then electroplating the substrate surface to fill the via holes with metal.
    Type: Application
    Filed: March 27, 2014
    Publication date: October 9, 2014
    Inventors: Shingo YASUDA, Akira OWATARI, Mizuki NAGAI, Akira SUSAKI
  • Patent number: 7878144
    Abstract: An electroless plating apparatus can form a protective film on exposed surfaces of embedded interconnects stably with good selectivity for thereby protecting the interconnects. The electroless plating apparatus includes a magnetic removal portion for magnetically removing small magnetic suspended solids in an electroless plating solution which have not been removed by a filter.
    Type: Grant
    Filed: October 25, 2006
    Date of Patent: February 1, 2011
    Assignee: Ebara Corporation
    Inventors: Akira Owatari, Yasuhiko Saijo, Junichiro Tsujino
  • Publication number: 20100105154
    Abstract: A substrate processing method can securely form a metal film by electroless plating on an exposed surface of a base metal, such as interconnects, with increased throughput and without the formation of voids in the base metal. The substrate processing method includes: cleaning a surface of a substrate having a base metal formed in the surface with a cleaning solution comprising an aqueous solution of a carboxyl group-containing organic acid or its salt and a surfactant as an additive; bringing the surface of the substrate after the cleaning into contact with a processing solution comprising a mixture of the cleaning solution and a solution containing a catalyst metal ion, thereby applying the catalyst to the surface of the substrate; and forming a metal film by electroless plating on the catalyst-applied surface of the substrate.
    Type: Application
    Filed: January 12, 2010
    Publication date: April 29, 2010
    Inventors: XINMING WANG, Daisuke Takagi, Akihiko Tashiro, Yukio Fukunaga, Akira Fukunaga, Akira Owatari, Yukiko Nishioka
  • Publication number: 20100075498
    Abstract: A semiconductor device has interconnects protected with an alloy film having a minimum thickness necessary for producing the effect of preventing diffusion of oxygen, copper, etc., formed more uniformly over an entire surface of a substrate with less dependency to the interconnect pattern of the substrate. The semiconductor device includes, embedded interconnects, formed by filling an interconnect material into interconnect recesses formed in an electric insulator on a substrate, and an alloy film, containing 1 to 9 atomic % of tungsten or molybdenum and 3 to 12 atomic % of phosphorus or boron, formed by electroless plating on at least part of the embedded interconnects.
    Type: Application
    Filed: December 2, 2009
    Publication date: March 25, 2010
    Inventors: Daisuke TAKAGI, Xinming Wang, Akira Owatari, Akira Fukunaga, Akihiko Tashiro
  • Patent number: 7575636
    Abstract: The present invention relates to a substrate processing apparatus useful for plating a substrate or processing a substrate by dipping a substrate in a processing liquid. A substrate processing apparatus of the present invention includes: a loading/unloading area for carrying in and out a substrate; a cleaning area for cleaning the substrate; and a plating area for plating the substrate. The loading/unloading area is provided with a substrate transfer robot having a plurality of hands of dry-use design, a loading port mounted with a cassette for housing substrates, and a reversing machine of dry-use design for reversing the substrate from face up to face down.
    Type: Grant
    Filed: June 20, 2006
    Date of Patent: August 18, 2009
    Assignee: Ebara Corporation
    Inventors: Seiji Katsuoka, Masahiko Sekimoto, Toshio Yokoyama, Teruyuki Watanabe, Takahiro Ogawa, Kenichi Kobayashi, Mitsuru Miyazaki, Yasuyuki Motoshima, Akira Owatari, Naoki Dai
  • Patent number: 7498261
    Abstract: A metal film-forming method of the present invention can form a metal film having different film qualities in the thickness direction, in a continuous manner using a single processing solution. The metal film-forming method including: providing a substrate having embedded interconnects formed in interconnect recesses provided in a surface of the substrate; and forming a metal film, having different film qualities in the thickness direction, on surfaces of the interconnects in a continuous manner by changing the flow state of a processing solution relative to the surface of the substrate while keeping the surface of the substrate in contact with the processing solution.
    Type: Grant
    Filed: September 7, 2005
    Date of Patent: March 3, 2009
    Assignee: Ebara Corporation
    Inventors: Xinming Wang, Daisuke Takagi, Akihiko Tashiro, Yukio Fukunaga, Akira Fukunaga, Akira Owatari
  • Patent number: 7442257
    Abstract: The present invention relates to a substrate processing apparatus useful for plating a substrate or processing a substrate by dipping a substrate in a processing liquid. A substrate processing apparatus of the present invention includes: a loading/unloading area for carrying in and out a substrate; a cleaning area for cleaning the substrate; and a plating area for plating the substrate. The loading/unloading area is provided with a substrate transfer robot having a plurality of hands of dry-use design, a loading port mounted with a cassette for housing substrates, and a reversing machine of dry-use design for reversing the substrate from face up to face down.
    Type: Grant
    Filed: June 20, 2006
    Date of Patent: October 28, 2008
    Assignee: Ebara Corporation
    Inventors: Seiji Katsuoka, Masahiko Sekimoto, Toshio Yokoyama, Teruyuki Watanabe, Takahiro Ogawa, Kenichi Kobayashi, Mitsuru Miyazaki, Yasuyuki Motoshima, Akira Owatari, Naoki Dai
  • Publication number: 20080176008
    Abstract: A magnetic film forming apparatus can form a magnetic film, especially a magnetic alloy film, selectively on a metal surface exposed on a surface of a substrate, such as a semiconductor wafer. The magnetic film forming apparatus comprises an electroless plating apparatus having a magnetic field generation apparatus for generating a magnetic field around and parallel to a substrate disposed such that the surface of the substrate is in contact with a plating solution in a plating tank.
    Type: Application
    Filed: January 22, 2008
    Publication date: July 24, 2008
    Inventors: Xinming Wang, Akira Owatari, Takashi Koba, Tsutomu Nakada, Akira Fukuda