Patents by Inventor Akito Higuchi
Akito Higuchi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 12033795Abstract: To provide a superconducting magnet device enabling improved access to internal equipment. A superconducting magnet device includes: a superconducting coil; and a hollow tubular cryostat having an outer peripheral wall and an inner peripheral wall connected to each other so as to define a vacuum region where the superconducting coil is disposed. The cryostat has a tubular partition wall connecting the outer peripheral wall and the inner peripheral wall and a cavity partitioned from the vacuum region by the tubular partition wall is formed inside the tubular partition wall. The outer peripheral wall has an opening portion wide in the circumferential direction of the cryostat, and the opening portion communicates with the cryostat hollow portion radially inside the inner peripheral wall through the cavity.Type: GrantFiled: April 4, 2022Date of Patent: July 9, 2024Assignee: SUMITOMO HEAVY INDUSTRIES, LTD.Inventor: Akito Higuchi
-
Publication number: 20220328226Abstract: To provide a superconducting magnet device enabling improved access to internal equipment. A superconducting magnet device includes: a superconducting coil; and a hollow tubular cryostat having an outer peripheral wall and an inner peripheral wall connected to each other so as to define a vacuum region where the superconducting coil is disposed. The cryostat has a tubular partition wall connecting the outer peripheral wall and the inner peripheral wall and a cavity partitioned from the vacuum region by the tubular partition wall is formed inside the tubular partition wall. The outer peripheral wall has an opening portion wide in the circumferential direction of the cryostat, and the opening portion communicates with the cryostat hollow portion radially inside the inner peripheral wall through the cavity.Type: ApplicationFiled: April 4, 2022Publication date: October 13, 2022Inventor: Akito Higuchi
-
Patent number: 11375603Abstract: There is provided a cyclotron which accelerates a charged particle in an orbital trajectory to emit a charged particle beam. The cyclotron includes a magnetic pole that generates a magnetic field required for accelerating the charged particle, and a magnetic channel portion having a magnetic channel disposed on an outer peripheral portion of the orbital trajectory to guide the charged particle beam to an extraction trajectory and to focus the charged particle beam. The magnetic channel portion is attached to the magnetic pole.Type: GrantFiled: August 27, 2020Date of Patent: June 28, 2022Assignee: SUMITOMO HEAVY INDUSTRIES, LTD.Inventors: Takaaki Morie, Akito Higuchi
-
Publication number: 20210068243Abstract: There is provided a cyclotron which accelerates a charged particle in an orbital trajectory to emit a charged particle beam. The cyclotron includes a magnetic pole that generates a magnetic field required for accelerating the charged particle, and a magnetic channel portion having a magnetic channel disposed on an outer peripheral portion of the orbital trajectory to guide the charged particle beam to an extraction trajectory and to focus the charged particle beam. The magnetic channel portion is attached to the magnetic pole.Type: ApplicationFiled: August 27, 2020Publication date: March 4, 2021Inventors: Takaaki Morie, Akito Higuchi
-
Patent number: 7988781Abstract: A non-settling refractory mortar is provided, which includes 100 mass % of a ceramic powder such as cordierite, mullite, alumina, or silicon carbide, 0.5 to 1.5 mass % of a clay mineral, and a colloidal oxide solution, in which the Ca content in the total solid component is defined at 0.01 to 0.5 mass % as converted to oxide so as to be provided with a thixotropic property. As a result, the coating performance is not lowered if stored for a long period after kneading, the dimension change rate after coating is small, and cracks or gaps are not formed on the coat surface. The median diameter of ceramic powder is preferred to be 10 to 50 ?m, and in order to reduce the dimension change rate after coating, the content of particles of 0.1 to 5 ?m in ceramic powder is desired to be 1 to 20%.Type: GrantFiled: February 21, 2008Date of Patent: August 2, 2011Assignees: NGK Insulators, Ltd., NGK Adrec Co., Ltd.Inventors: Tsuneo Komiyama, Osamu Yamakawa, Tetsuhiro Honjo, Akito Higuchi
-
Patent number: 7833923Abstract: A monolithic refractory material is provided by a method including the steps of kneading cordierite powder having a median diameter in a range of 10 to 50 ?m, and having a sharp mountain-like particle size distribution in which the content of particles smaller than 10 ?m is 1% or more to 36% or less, the content of particles ranging from 10 ?m or more to 50 ?m or less is 50% or more to 75% or less, and the content of particles of 51 ?m or more is 1% or more to 14% or less, and a solvent including water and alumina sol or silica sol solution.Type: GrantFiled: February 21, 2008Date of Patent: November 16, 2010Assignees: NGK Insulators, Ltd., NGK Adrec Co., Ltd.Inventors: Tsuneo Komiyama, Osamu Yamakawa, Tetsuhiro Honjo, Akito Higuchi
-
Patent number: 7820278Abstract: A refractory mortar cured material is formed in the surface or joint portions of a ceramic refractory material, such as fire bricks used in the lining of melting furnace or firing furnace used at high temperature, and includes ceramic particles with an inorganic binder having silanol group that are kneaded together with water. The kneaded mortar is applied on the surface of a ceramic base material. The average particle size of ceramic particles in the refractory mortar is 10 to 50 ?m, and the difference between the 90% particle size and the 10% particle size is 10 ?m or more to 60 ?m or less. The average pore size of the refractory mortar cured material is 5 to 25 ?m, and the width of pore size distribution is 20 to 80 ?m, so that the cracks are suppressed. In addition, the bulk density is 0.9 to 1.5 g/cm3.Type: GrantFiled: February 21, 2008Date of Patent: October 26, 2010Assignees: NGK Insulators, Ltd., NGK Adrec Co., Ltd.Inventors: Tsuneo Komiyama, Osamu Yamakawa, Tetsuhiro Honjo, Akito Higuchi
-
Publication number: 20100025324Abstract: A filtering medium for molten metal which is excellent in inclusion removal performance and durability and further may provide sufficient throughput and a method for producing the same. A filtering medium for molten metal in the present invention includes a two-layered structure of a macropore ceramic layer at the inflow side and a micropore ceramic layer at the outflow side. The average pore diameter of the micropore ceramic layer is from 100 to 500 ?m and the average pore diameter of the macropore ceramic layer is 1.1 to 3.0 times as large as that of the micropore ceramic layer. When respective layers are formed of aggregates bonded with an inorganic binder and the inorganic binder has a needle crystal structure with an aspect ratio of 2 to 50, the inside of filtering medium may be contributed to the filtration and the compatibility between inclusion-trapping performance and lifetime may be ensured.Type: ApplicationFiled: July 2, 2009Publication date: February 4, 2010Applicants: NGK Insulators, Ltd., NGK Adrec Co., Ltd.Inventors: Tsuneo Komiyama, Akito Higuchi, Hiroyuki Hotta
-
Publication number: 20090169848Abstract: The refractory mortar cured material of the invention formed in the surface or joint portions of a ceramic refractory material such as fire bricks used in the lining of melting furnace or firing furnace used at high temperature is composed by kneading ceramic particles with an inorganic binder having silanol group together with water, and forming the kneaded mortar on the surface of a ceramic base material. The average particle size of ceramic particles in the refractory mortar is 10 to 50 ?m, the difference of 90% particle size and 10% particle size is 10 ?m or more to 60 ?m or less, the average pore size of the refractory mortar cured material is 5 to 25 ?m, and the width of pore size distribution is 20 to 80 ?m, so that the cracks may be suppressed. More preferably, the bulk density is 0.9 to 1.5 g/cm3.Type: ApplicationFiled: February 21, 2008Publication date: July 2, 2009Applicants: NGK Insulators, Ltd., NGK Adrec Co., Ltd.Inventors: Tsuneo Komiyama, Osamu Yamakawa, Tetsuhiro Honjo, Akito Higuchi
-
Publication number: 20090145334Abstract: The non-settling refractory mortar of the invention contains 100 parts of ceramic powder such as cordierite, mullite, alumina, or silicon carbide, 0.5 to 1.5 parts of clay mineral, and colloidal oxide solution, in which the Ca content in total solid component is defined at 0.01 to 0.5% as converted to oxide so as to be provided with thixotropic property. As a result, the coating performance is not lowered if stored for a long period after kneading, the dimension change rate after coating is small, and cracks or gaps are not formed on the coat surface. The median diameter of ceramic powder is preferred to be 10 to 50 ?m, and in order to reduce the dimension change rate after coating, the content of particles of 0.1 to 5 ?m in ceramic powder is desired to be 1 to 20%.Type: ApplicationFiled: February 21, 2008Publication date: June 11, 2009Applicants: NGK Insulators, Ltd., NGK Adrec Co., Ltd.Inventors: Tsuneo Komiyama, Osamu Yamakawa, Tetsuhiro Honjo, Akito Higuchi
-
Publication number: 20090149311Abstract: The invention relates to a Monolithic refractory material used in refractories and refractory ceramic products, and more particularly to a Monolithic refractory material having low expansibility, high strength, and crack extension resistance used for the purpose of repairing, protecting, modifying, filling, and forming the surface, adhesive surface, interface, or joint of low-expansion fire bricks and refractory ceramic products. The Monolithic refractory material of the invention is a Monolithic refractory material prepared by kneading cordierite powder, having a median diameter in a range of 10 to 50 ?m, and a sharp mountain-like particle size distribution in which the content of particles smaller than 10 ?m is 1% or more to 36% or less, the content of particles ranging from 10 ?m or more to 50 ?m or less is 50% or more to 75% or less, and the content of particles of 51 ?m or more is 1% or more to 14% or less, and a solvent composed of water and alumina sol or silica sol solution.Type: ApplicationFiled: February 21, 2008Publication date: June 11, 2009Applicants: NGK Insulators, Ltd., NGK Adrec Co., Ltd.Inventors: Tsuneo Komiyama, Osamu Yamakawa, Tetsuhiro Honjo, Akito Higuchi
-
Patent number: 6696130Abstract: A ceramic honeycomb structure has an open frontal area of 50% to 85%, a porosity of 0.1% to 10%, and a proportion of the volume of pores of 1 &mgr;m or larger in diameter, in total pore volume, of 20% or more; a regenerative thermal oxidizer using the ceramic honeycomb structure. The ceramic honeycomb structure has a small porosity and, therefore, has a sufficient heat accumulation capacity and hardly causes floating by gas pressure; has controlled pore diameters and, therefore, hardly shows adsorption of VOC or the like, or rupture; and has controlled contraction and, therefore, has a large GSA.Type: GrantFiled: March 24, 2000Date of Patent: February 24, 2004Assignee: NGK Insulators, Ltd.Inventors: Yoshiyuki Kasai, Takashi Harada, Yukinari Shibagaki, Akito Higuchi