Patents by Inventor Akito Nishii

Akito Nishii has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11824014
    Abstract: According to one aspect, a semiconductor device includes: a buffer layer disposed on a front surface of a second semiconductor layer, and having at least one opening in plan view; and an electrode disposed over the second semiconductor layer and the buffer layer, and being in contact with the second semiconductor layer through the at least one opening, wherein the buffer layer has a higher Vickers hardness than the electrode, and a width w of each of the at least one opening satisfies w<Wth, where s is a thickness of the buffer layer, t is a thickness of the electrode, and Wth=2×(s×t?s2)0.5 holds true.
    Type: Grant
    Filed: January 21, 2021
    Date of Patent: November 21, 2023
    Assignee: Mitsubishi Electric Corporation
    Inventors: Akito Nishii, Tatsuo Harada, Katsumi Uryu, Noritsugu Nomura, Sho Tanaka
  • Publication number: 20210305174
    Abstract: According to one aspect, a semiconductor device includes: a buffer layer disposed on a front surface of a second semiconductor layer, and having at least one opening in plan view; and an electrode disposed over the second semiconductor layer and the buffer layer, and being in contact with the second semiconductor layer through the at least one opening, wherein the buffer layer has a higher Vickers hardness than the electrode, and a width w of each of the at least one opening satisfies w<Wth, where s is a thickness of the buffer layer, t is a thickness of the electrode, and Wth=2×(s×t?s2)0.5 holds true.
    Type: Application
    Filed: January 21, 2021
    Publication date: September 30, 2021
    Applicant: Mitsubishi Electric Corporation
    Inventors: Akito NISHII, Tatsuo HARADA, Katsumi URYU, Noritsugu NOMURA, Sho TANAKA
  • Patent number: 11004986
    Abstract: It is an object of the present invention to provide a technique of preventing electric-field concentration in a first P-type semiconductor layer during recovery operation. A semiconductor device includes a drift layer, an N-type semiconductor layer, a first P-type semiconductor layer, a second P-type semiconductor layer, an electrode, and an insulating layer. The N-type semiconductor layer and the first P-type semiconductor layer are disposed below the drift layer while being adjacent to each other in a lateral direction. The insulating layer is disposed above the first P-type semiconductor layer while being in contact with the second P-type semiconductor layer and the electrode.
    Type: Grant
    Filed: April 25, 2016
    Date of Patent: May 11, 2021
    Assignee: Mitsubishi Electric Corporation
    Inventor: Akito Nishii
  • Publication number: 20190043998
    Abstract: It is an object of the present invention to provide a technique of preventing electric-field concentration in a first P-type semiconductor layer during recovery operation. A semiconductor device includes a drift layer, an N-type semiconductor layer, a first P-type semiconductor layer, a second P-type semiconductor layer, an electrode, and an insulating layer. The N-type semiconductor layer and the first P-type semiconductor layer are disposed below the drift layer while being adjacent to each other in a lateral direction. The insulating layer is disposed above the first P-type semiconductor layer while being in contact with the second P-type semiconductor layer and the electrode.
    Type: Application
    Filed: April 25, 2016
    Publication date: February 7, 2019
    Applicant: Mitsubishi Electric Corporation
    Inventor: Akito NISHII
  • Publication number: 20170154955
    Abstract: A semiconductor device includes: a semiconductor substrate; a device region on the semiconductor substrate; a planar edge termination region on the semiconductor substrate to surround the device region; and a passivation film covering the edge termination region, wherein the passivation film includes a semi-insulating film directly contacting the semiconductor substrate.
    Type: Application
    Filed: June 6, 2016
    Publication date: June 1, 2017
    Applicant: Mitsubishi Electric Corporation
    Inventors: Tatsuo HARADA, Shigeto HONDA, Akito NISHII, Ze CHEN
  • Patent number: 9601639
    Abstract: A p-type anode layer (2) is provided on an upper surface of an n-type drift layer (1). An n-type cathode layer (3) is provided on a lower surface of the n?-type drift layer (1). An n-type buffer layer (4) is provided between the n?-type drift layer (1) and the n-type cathode layer (3). A peak impurity concentration in the n-type buffer layer (4) is higher than that in the n?-type drift layer (1) and lower than that in the n-type cathode layer (3). A gradient of carrier concentration at a connection between the n?-type drift layer (1) and the n-type buffer layer (4) is 20 to 2000 cm?4.
    Type: Grant
    Filed: June 12, 2013
    Date of Patent: March 21, 2017
    Assignee: Mitsubishi Electric Corporation
    Inventors: Fumihito Masuoka, Katsumi Nakamura, Akito Nishii
  • Patent number: 9508792
    Abstract: An electric field buffer layer is formed so as to surround an active region. The electric field buffer layer includes a plurality of P-type impurity layers. Each of the P-type impurity layers includes P-type implantation layers and P-type diffusion layers that are formed so as to respectively surround the P-type implantation layers and contain P-type impurities at a concentration lower than that of the P-type implantation layers. A first P-type implantation layer is formed to be in contact with or to partially overlap the active region. Each of the P-type diffusion layers is formed to have an expansion to a degree to which the first P-type diffusion layer is in contact with or overlaps a second P-type diffusion layer. Intervals between the P-type implantation layers increase from the active region toward the outer peripheral portion of the semiconductor substrate.
    Type: Grant
    Filed: May 1, 2013
    Date of Patent: November 29, 2016
    Assignee: Mitsubishi Electric Corporation
    Inventors: Tsuyoshi Kawakami, Ze Chen, Akito Nishii, Fumihito Masuoka, Katsumi Nakamura, Akihiko Furukawa, Yuji Murakami
  • Patent number: 9508870
    Abstract: A p-type anode layer (2) provided on an n-type drift layer (1) in the active region. A p-type diffusion layer (3) is provided on the n-type drift layer (1) in a termination region outside the active region. An oxide film (4) covers an outer periphery of the p-type anode layer (2). An anode electrode (5) is connected to a portion of the p-type anode layer (2) not covered with the oxide film (4). An n+-type cathode layer (7) is provided below the n-type drift layer (1). A cathode electrode (8) is connected to the n+-type cathode layer (7). An area of a portion of the p-type anode layer (2) covered with the oxide film (4) is 5 to 30% of a total area of the p-type anode layer (2).
    Type: Grant
    Filed: April 13, 2012
    Date of Patent: November 29, 2016
    Assignee: Mitsubishi Electric Corporation
    Inventors: Akito Nishii, Katsumi Nakamura
  • Publication number: 20160056306
    Abstract: A p-type anode layer (2) is provided on an upper surface of an n-type drift layer (1). An n-type cathode layer (3) is provided on a lower surface of the n?-type drift layer (1). An n-type buffer layer (4) is provided between the n?-type drift layer (1) and the n-type cathode layer (3). A peak impurity concentration in the n-type buffer layer (4) is higher than that in the n?-type drift layer (1) and lower than that in the n-type cathode layer (3). A gradient of carrier concentration at a connection between the n?-type drift layer (1) and the n-type buffer layer (4) is 20 to 2000 cm?4.
    Type: Application
    Filed: June 12, 2013
    Publication date: February 25, 2016
    Applicant: Mitsubishi Electric Corporation
    Inventors: Fumihito MASUOKA, Katsumi NAKAMURA, Akito NISHII
  • Patent number: 9202936
    Abstract: A semiconductor device includes: an N-type drift layer; a P-type anode layer on the N-type drift layer; a trench penetrating the P-type anode layer; a conductive substance embedded in the trench via an insulating film; and an N-type buffer layer between the N-type drift layer and the P-type anode layer and having impurity concentration which is higher than that of the N-type drift layer.
    Type: Grant
    Filed: July 21, 2014
    Date of Patent: December 1, 2015
    Assignee: MITSUBISHI ELECTRIC CORPORATION
    Inventors: Akito Nishii, Katsumi Nakamura
  • Publication number: 20150221721
    Abstract: An electric field buffer layer (13) is formed so as to surround an active region (12) from an outer peripheral portion of the active region (12) toward an outer peripheral portion of a semiconductor substrate (11). The electric field buffer layer (13) includes a plurality of P-type impurity layers (21 to 25). Each of the P-type impurity layers (21 to 25) includes P-type implantation layers (21a to 25a) and P-type diffusion layers (21b to 25b) that are formed so as to respectively surround the P-type implantation layers (21a to 25a) and contain P-type impurities at a concentration lower than that of the P-type implantation layers (21a to 25a). A first P-type implantation layer (21a) is formed to be in contact with or to partially overlap the active region (12). Each of the P-type diffusion layers (21b to 25b) is formed to have an expansion to a degree to which the first P-type diffusion layer (21b) is in contact with or overlaps a second P-type diffusion layer (22b).
    Type: Application
    Filed: May 1, 2013
    Publication date: August 6, 2015
    Applicant: MITSUBISHI ELECTRIC CORPORATION
    Inventors: Tsuyoshi Kawakami, Ze Chen, Akito Nishii, Fumihito Masuoka, Katsumi Nakamura, Akihiko Furukawa, Yuji Murakami
  • Publication number: 20150021747
    Abstract: A p-type anode layer (2) provided on an n-type drift layer (1) in the active region. A p-type diffusion layer (3) is provided on the n-type drift layer (1) in a termination region outside the active region. An oxide film (4) covers an outer periphery of the p-type anode layer (2). An anode electrode (5) is connected to a portion of the p-type anode layer (2) not covered with the oxide film (4). An n+-type cathode layer (7) is provided below the n-type drift layer (1). A cathode electrode (8) is connected to the n+-type cathode layer (7). An area of a portion of the p-type anode layer (2) covered with the oxide film (4) is 5 to 30% of a total area of the p-type anode layer (2).
    Type: Application
    Filed: April 13, 2012
    Publication date: January 22, 2015
    Applicant: Mitsubishi Electric Corporation
    Inventors: Akito Nishii, Katsumi Nakamura
  • Publication number: 20140327072
    Abstract: A semiconductor device includes: an N-type drift layer; a P-type anode layer on the N-type drift layer; a trench penetrating the P-type anode layer; a conductive substance embedded in the trench via an insulating film; and an N-type buffer layer between the N-type drift layer and the P-type anode layer and having impurity concentration which is higher than that of the N-type drift layer.
    Type: Application
    Filed: July 21, 2014
    Publication date: November 6, 2014
    Applicant: Mitsubishi Electric Corporation
    Inventors: Akito Nishii, Katsumi Nakamura
  • Publication number: 20120228700
    Abstract: A semiconductor device includes: an N-type drift layer; a P-type anode layer on the N-type drift layer; a trench penetrating the P-type anode layer; a conductive substance embedded in the trench via an insulating film; and an N-type buffer layer between the N-type drift layer and the P-type anode layer and having impurity concentration which is higher than that of the N-type drift layer.
    Type: Application
    Filed: September 20, 2011
    Publication date: September 13, 2012
    Applicant: MITSUBISHI ELECTRIC CORPORATION
    Inventors: Akito Nishii, Katsumi Nakamura