Patents by Inventor Akiyoshi Irisawa

Akiyoshi Irisawa has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9846120
    Abstract: A light measurement apparatus includes a master laser, a slave laser, an illumination light pulse, and a signal-under-measurement generator. The master laser generates as an output a master laser light pulse, and the slave laser generates as an output a slave laser light pulse having a repetition frequency or a phase different from that of the master laser light pulse. The illumination light pulse generator receives the master laser light pulse and generates as an output an illumination light pulse, and the signal-under-measurement generator, at a point in time when receiving a light pulse under measurement obtained by illuminating the object under measurement with the illumination light pulse and further the slave laser light pulse, generates as an output a signal under measurement according to a power of the light pulse under measurement. The apparatus corrects an error in a measurement of the signal under measurement.
    Type: Grant
    Filed: August 22, 2013
    Date of Patent: December 19, 2017
    Assignee: ADVANTEST CORPORATION
    Inventors: Masaichi Hashimoto, Akiyoshi Irisawa
  • Publication number: 20170074803
    Abstract: According to the present invention, an electromagnetic wave measurement device includes an electromagnetic wave output device and an electromagnetic wave detector. The electromagnetic wave output device outputs and electromagnetic wave having a frequency equal to or more than 0.01 [THz] and equal to or less than 100 [THz] toward a sample acquired by adhering a plurality of specimens to each other by an adhesive. The electromagnetic wave detector detects a transmitted electromagnetic wave, which is the electromagnetic wave having transmitted through the sample. The electromagnetic wave having transmitted through the sample. The electromagnetic wave measurement device determines wherein whether a joint by the adhesive is excellent or not based on the detected transmitted electromagnetic wave.
    Type: Application
    Filed: April 21, 2015
    Publication date: March 16, 2017
    Applicant: ADVANTEST CORPORATION
    Inventors: Fumikazu TAKAYANAGI, Akiyoshi IRISAWA
  • Publication number: 20170074804
    Abstract: According to the present invention, an electromagnetic wave measurement device includes an electromagnetic wave output device and an electromagnetic wave detector. The electromagnetic wave output device outputs an electromagnetic wave having a frequency equal to or more than 0.01 [THz] and equal to or less than 100 [THz] toward a sample acquired by adhering a plurality of specimens to each other by an adhesive and a reflective body arranged behind the sample. The electromagnetic wave detector detects a reflected electromagnetic wave, which is the electromagnetic wave reflected by one of the sample and the reflective body. The electromagnetic wave measurement device determines whether a joint by the adhesive is excellent or not based on the detected reflected electromagnetic wave.
    Type: Application
    Filed: April 21, 2015
    Publication date: March 16, 2017
    Applicant: ADVANTEST CORPORATION
    Inventors: Fumikazu TAKAYANAGI, Akiyoshi IRISAWA
  • Patent number: 9568422
    Abstract: Provided is a light beam incident device including an off-axis parabolic mirror that receives parallel light beams and converges the parallel light beams at one point on an object to be measured, and an incident-side light reception surface of a mirror that feeds the parallel light beams to the off-axis parabolic mirror. An angle (incident angle) between the object to be measured and converged light beams obtained by converging the parallel light beams changes in accordance with a light reception portion at which the off-axis parabolic mirror receives the parallel light beams. The incident side light reception surface of the mirror can change the light reception portion by moving with respect to the off-axis parabolic mirror.
    Type: Grant
    Filed: March 4, 2013
    Date of Patent: February 14, 2017
    Assignee: ADVANTEST CORPORATION
    Inventors: Tomoyu Yamashita, Akiyoshi Irisawa
  • Patent number: 9190804
    Abstract: A pulse light source includes: a master laser that outputs a master laser light pulse whose repetition frequency is controlled to a predetermined value; a slave laser that outputs a slave laser light pulse; a phase comparator that detects a phase difference between an electric signal having a frequency of the predetermined value, and an electric signal based on a light intensity of the slave laser light pulse; a loop filter; an adder that adds a repetition frequency control signal having a certain repetition cycle, to an output from the loop filter; and a phase comparator that measures a pulse phase difference which is a phase difference between the master laser light pulse and the slave laser light pulse. A magnitude of the repetition frequency control signal is controlled such that the measured pulse phase difference matches with a target value of the pulse phase difference.
    Type: Grant
    Filed: July 19, 2013
    Date of Patent: November 17, 2015
    Assignee: ADVANTEST CORPORATION
    Inventors: Tomoyu Yamashita, Akiyoshi Irisawa
  • Patent number: 9182354
    Abstract: According to the present invention, an electromagnetic wave measurement device includes an electromagnetic wave output device, an electromagnetic wave detector and a measurement unit. The electromagnetic wave output device outputs an electromagnetic wave having a frequency equal to or more than 0.01 [THz] and equal to or less than 100 [THz] toward a device under test including at least two layers, and the electromagnetic wave detector detects reflected electromagnetic waves which are the electromagnetic waves reflected by the respective at least two layers. The measurement unit measures the device under test based on one or both of extreme values of electric fields of the respective reflected electromagnetic waves and a time difference between timings in which the electric fields of the respective reflected electromagnetic waves take the extreme values.
    Type: Grant
    Filed: April 27, 2012
    Date of Patent: November 10, 2015
    Assignee: ADVANTEST CORPORATION
    Inventors: Eiji Kato, Akiyoshi Irisawa
  • Patent number: 9176008
    Abstract: An electromagnetic wave measurement device includes an electromagnetic wave outputter that outputs an electromagnetic wave having a frequency equal to or more than 0.01 THz and equal to or less than 100 THz toward a device under test. An electromagnetic wave detector detects the electromagnetic wave which has transmitted through the device under test. A relative position changer changes a relative position of an intersection of an optical path of the electromagnetic wave transmitting through the device under test and the device under test, with respect to the device under test, so that the intersection is at a predetermined relative position due to the refraction of the electromagnetic wave by the device under test. A characteristic value deriver derives a characteristic value of the electromagnetic wave based on a detection result of the electromagnetic wave detector, the characteristic value being associated with the predetermined relative position.
    Type: Grant
    Filed: April 25, 2013
    Date of Patent: November 3, 2015
    Assignee: ADVANTEST CORPORATION
    Inventors: Shigeki Nishina, Motoki Imamura, Akiyoshi Irisawa, Tomoyu Yamashita, Eiji Kato, Kodo Kawase
  • Patent number: 9157857
    Abstract: According to the present invention, an electromagnetic wave measurement device includes: an electromagnetic wave detector, a frequency component acquisition unit, and a thickness indication quantity deriving unit. An object to be measured is disposed on a substrate and includes at least two layers, and the electromagnetic wave detector detects a substrate-surface-reflected electromagnetic wave which has been made incident to the object, has been reflected by the substrate, and has passed through the object. The frequency component acquisition unit acquires an amplitude of a frequency component of the substrate-surface-reflected electromagnetic wave. The thickness indication quantity deriving unit derives a thickness indication quantity based on the amplitude of the frequency component of the substrate-surface-reflected electromagnetic wave and a relationship between the thickness indication quantity and the amplitude of the frequency component of the substrate-surface-reflected electromagnetic wave.
    Type: Grant
    Filed: December 17, 2013
    Date of Patent: October 13, 2015
    Assignee: ADVANTEST CORPORATION
    Inventors: Shigeru Ono, Kazunori Shiota, Masaichi Hashimoto, Akiyoshi Irisawa
  • Publication number: 20150241346
    Abstract: A light measurement apparatus includes a master laser, a slave laser, an illumination light pulse, and a signal-under-measurement generator. The master laser generates as an output a master laser light pulse, and the slave laser generates as an output a slave laser light pulse having a repetition frequency or a phase different from that of the master laser light pulse. The illumination light pulse generator receives the master laser light pulse and generates as an output an illumination light pulse, and the signal-under-measurement generator, at a point in time when receiving a light pulse under measurement obtained by illuminating the object under measurement with the illumination light pulse and further the slave laser light pulse, generates as an output a signal under measurement according to a power of the light pulse under measurement. The apparatus corrects an error in a measurement of the signal under measurement.
    Type: Application
    Filed: August 22, 2013
    Publication date: August 27, 2015
    Applicant: ADVANTEST CORPORATION
    Inventors: Masaichi Hashimoto, Akiyoshi Irisawa
  • Publication number: 20150194786
    Abstract: A pulse light source includes: a master laser that outputs a master laser light pulse whose repetition frequency is controlled to a predetermined value; a slave laser that outputs a slave laser light pulse; a phase comparator that detects a phase difference between an electric signal having a frequency of the predetermined value, and an electric signal based on a light intensity of the slave laser light pulse; a loop filter; an adder that adds a repetition frequency control signal having a certain repetition cycle, to an output from the loop filter; and a phase comparator that measures a pulse phase difference which is a phase difference between the master laser light pulse and the slave laser light pulse. A magnitude of the repetition frequency control signal is controlled such that the measured pulse phase difference matches with a target value of the pulse phase difference.
    Type: Application
    Filed: July 19, 2013
    Publication date: July 9, 2015
    Applicant: ADVANTEST CORPORATION
    Inventors: Tomoyu Yamashita, Akiyoshi Irisawa
  • Patent number: 8901477
    Abstract: According to the present invention, an electromagnetic wave detection device includes an optical waveguide, an electromagnetic wave input unit, and a phase difference measurement unit. According to the thus constructed electromagnetic wave detection device, an optical waveguide is a nonlinear crystal, and includes a branching portion for receiving a probe light pulse, and causing the probe light pulse to branch into two beams of branching light, and two branching light transmission portions for receiving the branching light from the branching portion, and transmitting the branching light. An electromagnetic wave input unit inputs an electromagnetic wave having a frequency equal to or more than 0.01 [THz] and equal to or less than 100 [THz] tilted by an angle generating Cherenkov phase matching with respect to a travel direction of the branching light into one of the two branching light transmission portions.
    Type: Grant
    Filed: September 13, 2012
    Date of Patent: December 2, 2014
    Assignee: Advantest Corporation
    Inventors: Kazunori Shiota, Akiyoshi Irisawa
  • Publication number: 20140168652
    Abstract: Provided is a light beam incident device including an off-axis parabolic mirror that receives parallel light beams and converges the parallel light beams at one point on an object to be measured, and an incident-side light reception surface of a mirror that feeds the parallel light beams to the off-axis parabolic mirror. An angle (incident angle) between the object to be measured and converged light beams obtained by converging the parallel light beams changes in accordance with a light reception portion at which the off-axis parabolic mirror receives the parallel light beams. The incident side light reception surface of the mirror can change the light reception portion by moving with respect to the off-axis parabolic mirror.
    Type: Application
    Filed: March 4, 2013
    Publication date: June 19, 2014
    Applicant: ADVANTEST CORPORATION
    Inventors: Tomoyu YAMASHITA, Akiyoshi IRISAWA
  • Publication number: 20140166883
    Abstract: According to the present invention, an electromagnetic wave measurement device includes: an electromagnetic wave detector, a frequency component acquisition unit, and a thickness indication quantity deriving unit. An object to be measured is disposed on a substrate and includes at least two layers, and the electromagnetic wave detector detects a substrate-surface-reflected electromagnetic wave which has been made incident to the object, has been reflected by the substrate, and has passed through the object. The frequency component acquisition unit acquires an amplitude of a frequency component of the substrate-surface-reflected electromagnetic wave. The thickness indication quantity deriving unit derives a thickness indication quantity based on the amplitude of the frequency component of the substrate-surface-reflected electromagnetic wave and a relationship between the thickness indication quantity and the amplitude of the frequency component of the substrate-surface-reflected electromagnetic wave.
    Type: Application
    Filed: December 17, 2013
    Publication date: June 19, 2014
    Inventors: Shigeru ONO, Kazunori SHIOTA, Masaichi HASHIMOTO, Akiyoshi IRISAWA
  • Patent number: 8718108
    Abstract: According to the repetition frequency control device, a master laser outputs a master laser light pulse the repetition frequency of which is controlled to a predetermined value. A slave laser outputs a slave laser light pulse. A reference comparator compares a voltage of a reference electric signal the repetition frequency of which is the predetermined value and a predetermined voltage with each other, thereby outputting a result thereof. A measurement comparator compares a voltage based on a light intensity of the slave laser light pulse and the predetermined voltage with each other, thereby outputting a result thereof. A phase difference detector detects a phase difference between the output from the reference comparator and the output from the measurement comparator. A loop filter removes a high-frequency component of an output from the phase difference detector.
    Type: Grant
    Filed: December 2, 2011
    Date of Patent: May 6, 2014
    Assignee: Advantest Corporation
    Inventors: Tomoyu Yamashita, Akiyoshi Irisawa
  • Patent number: 8676061
    Abstract: A frequency converter includes a first direct digital synthesizer that receives a signal having a predetermined frequency f_master as a clock signal and further an internal frequency setting signal, and outputs an internal signal having a frequency based on the internal frequency setting signal, and a second direct digital synthesizer that receives the internal signal as a clock signal, and further an output frequency setting signal, and outputs an output signal having a frequency f_slave (=f_master??) based on the output frequency setting signal. A difference between the predetermined frequency f_master and the frequency of the internal signal is larger than a difference between the predetermined frequency f_master and the frequency f_slave of the output signal.
    Type: Grant
    Filed: November 5, 2010
    Date of Patent: March 18, 2014
    Assignee: Advantest Corporation
    Inventors: Tomoyu Yamashita, Akiyoshi Irisawa
  • Patent number: 8642984
    Abstract: According to the present invention, an electromagnetic wave emission device includes a nonlinear crystal having an optical waveguide; and a prism including an electromagnetic wave input surface and an electromagnetic wave transmission surface. The electromagnetic wave transmission surface includes a rotation surface which is a trajectory of a tilted line segment rotated about a central axis of the electromagnetic wave input surface, the tilted line segment being tilted with respect to the central axis. The tilted line segment and the central axis are on the same plane. The central axis is in parallel to an extending direction of the optical waveguide. The central axis passes through a projection of the optical waveguide into the electromagnetic wave input surface.
    Type: Grant
    Filed: April 15, 2013
    Date of Patent: February 4, 2014
    Assignee: Advantest Corporation
    Inventors: Kazunori Shiota, Akiyoshi Irisawa
  • Publication number: 20130284950
    Abstract: According to the present invention, an electromagnetic wave emission device includes a nonlinear crystal having an optical waveguide; and a prism including an electromagnetic wave input surface and an electromagnetic wave transmission surface. The electromagnetic wave transmission surface includes a rotation surface which is a trajectory of a tilted line segment rotated about a central axis of the electromagnetic wave input surface, the tilted line segment being tilted with respect to the central axis. The tilted line segment and the central axis are on the same plane. The central axis is in parallel to an extending direction of the optical waveguide. The central axis passes through a projection of the optical waveguide into the electromagnetic wave input surface.
    Type: Application
    Filed: April 15, 2013
    Publication date: October 31, 2013
    Applicant: ADVANTEST CORPORATION
    Inventors: Kazunori SHIOTA, Akiyoshi IRISAWA
  • Publication number: 20130240736
    Abstract: An electromagnetic wave measurement device includes an electromagnetic wave outputter that outputs an electromagnetic wave having a frequency equal to or more than 0.01 THz and equal to or less than 100 THz toward a device under test. An electromagnetic wave detector detects the electromagnetic wave which has transmitted through the device under test. A relative position changer changes a relative position of an intersection of an optical path of the electromagnetic wave transmitting through the device under test and the device under test, with respect to the device under test, so that the intersection is at a predetermined relative position due to the refraction of the electromagnetic wave by the device under test. A characteristic value deriver derives a characteristic value of the electromagnetic wave based on a detection result of the electromagnetic wave detector, the characteristic value being associated with the predetermined relative position.
    Type: Application
    Filed: April 25, 2013
    Publication date: September 19, 2013
    Applicant: ADVANTEST CORPORATION
    Inventors: Shigeki NISHINA, Motoki IMAMURA, Akiyoshi IRISAWA, Tomoyu YAMASHITA, Eiji KATO, Kodo KAWASE
  • Patent number: 8493057
    Abstract: A detector detects an electromagnetic wave having a frequency of 0.01 THz?f?100 THz and transmitted through a device under test (DUT). A changer changes a relative position of an intersection of an optical path of the electromagnetic wave and the DUT, with respect to the DUT. A deriver derives a characteristic value of the electromagnetic wave based on a detection result of the detector, while the characteristic value is associated with an assumed relative position, which is the relative position if the electromagnetic wave is not refracted by the DUT. A corrector changes the assumed relative position to an actual relative position, which is the relative position if the refraction of the electromagnetic wave by the DUT is considered. A corrected deriver derives the characteristic value associated with a predetermined relative position based on an output from the corrector.
    Type: Grant
    Filed: March 25, 2010
    Date of Patent: July 23, 2013
    Assignee: Advantest Corporation
    Inventors: Shigeki Nishina, Motoki Imamura, Akiyoshi Irisawa, Tomoyu Yamashita, Eiji Kato, Kodo Kawase
  • Patent number: 8481938
    Abstract: According to the present invention, an electromagnetic wave measurement device includes an electromagnetic wave output device, an electromagnetic wave detector, a relative position changing unit, a delay period recording unit, a phase deriving unit, a delay-corrected phase deriving unit, a sinogram deriving unit, and an image deriving unit. The electromagnetic wave output device outputs an electromagnetic wave having a frequency equal to or more than 0.01 THz and equal to or less than 100 THz toward a device under test and a container storing at least a part of the device under test.
    Type: Grant
    Filed: March 25, 2010
    Date of Patent: July 9, 2013
    Assignee: Advantest Corporation
    Inventors: Shigeki Nishina, Motoki Imamura, Akiyoshi Irisawa, Tomoyu Yamashita, Eiji Kato