Patents by Inventor Akiyoshi Ohki

Akiyoshi Ohki has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230373830
    Abstract: Increased control and efficiency over the wastewater purification can be achieved through creating conditions that allow the operator to selectively prioritize the digestive function of microorganism in the activated sludge. The gas-dispersion return sludge is created using pure oxygen or oxygen containing trace amounts of ozone as a reactive gas, which is blended with return sludge to create a mixture of gas and liquid, which is passed through an atomizer or a cavitation pump to instantly render the reactive gas to an ultra-fine bubble state. At least a portion of the ultra-fine bubbles dissolve within the gas-dispersion return sludge, activating the dormant microorganisms. Due to a complete or an almost complete absence of biodegradable material in the gas-dispersion return sludge, the microorganism prioritize their digestive function, and when exposed to biodegradable pollutants present in wastewater, digest the pollutants using biochemical pathways different from the ones used in nature.
    Type: Application
    Filed: August 1, 2023
    Publication date: November 23, 2023
    Inventors: Akiyoshi Ohki, Whitney Rich
  • Patent number: 11724948
    Abstract: Increased control and efficiency over the wastewater purification can be achieved through creating conditions that allow the operator to selectively prioritize the digestive function of microorganism in the activated sludge. The gas-dispersion return sludge is created using pure oxygen or oxygen containing trace amounts of ozone as a reactive gas, which is blended with return sludge to create a mixture of gas and liquid, which is passed through an atomizer or a cavitation pump to instantly render the reactive gas to an ultra-fine bubble state. At least a portion of the ultra-fine bubbles dissolve within the gas-dispersion return sludge, activating the dormant microorganisms. Due to a complete or an almost complete absence of biodegradable material in the gas-dispersion return sludge, the microorganism prioritize their digestive function, and when exposed to biodegradable pollutants present in wastewater, digest the pollutants using biochemical pathways different from the ones used in nature.
    Type: Grant
    Filed: April 30, 2021
    Date of Patent: August 15, 2023
    Inventors: Akiyoshi Ohki, Whitney Rich
  • Publication number: 20210246056
    Abstract: Increased control and efficiency over the wastewater purification can be achieved through creating conditions that allow the operator to selectively prioritize the digestive function of microorganism in the activated sludge. The gas-dispersion return sludge is created using pure oxygen or oxygen containing trace amounts of ozone as a reactive gas, which is blended with return sludge to create a mixture of gas and liquid, which is passed through an atomizer or a cavitation pump to instantly render the reactive gas to an ultra-fine bubble state. At least a portion of the ultra-fine bubbles dissolve within the gas-dispersion return sludge, activating the dormant microorganisms. Due to a complete or an almost complete absence of biodegradable material in the gas-dispersion return sludge, the microorganism prioritize their digestive function, and when exposed to biodegradable pollutants present in wastewater, digest the pollutants using biochemical pathways different from the ones used in nature.
    Type: Application
    Filed: April 30, 2021
    Publication date: August 12, 2021
    Inventors: Akiyoshi Ohki, Whitney Rich
  • Patent number: 11072547
    Abstract: The efficiency of water disinfection can be significantly increased by supplying the ozone in combination with oxygen to an inlet of a cavitation pump or a line atomizer. A compressor can be introduced at an inlet of the cavitation pump or the line atomizer, compressing the gas mixture at a pressure higher than the pressure within pump or the atomizer. The compressed gases are provided to the inlet of the atomizer or the pump, where the compressed gases mix with the water and enter the cavitation pump or the line atomizer (where most of the dissolution of the gases happens). The compressor allows to increase the amount of oxygen and ozone provided to the pump or the line atomizer, increasing their dissolved concentration. In addition to the disinfecting properties, the higher level of oxygen correlates to an improved taste of the water.
    Type: Grant
    Filed: December 21, 2020
    Date of Patent: July 27, 2021
    Inventors: Akiyoshi Ohki, Whitney Rich
  • Patent number: 11046603
    Abstract: Increased control and efficiency over the wastewater purification can be achieved through creating conditions that allow the operator to selectively prioritize the digestive function of microorganisms in the activated sludge. The gas-dispersion return sludge is created using pure oxygen or oxygen containing trace amounts of ozone as a reactive gas, which is blended with return sludge to create a mixture of gas and liquid, which is passed through an atomizer or a cavitation pump to instantly render the reactive gas to an ultra-fine bubble state. At least a portion of the ultra-fine bubbles dissolve within the gas-dispersion return sludge, activating the dormant microorganisms. Due to a complete or an almost complete absence of biodegradable material in the gas-dispersion return sludge, the microorganism prioritize their digestive function, and when exposed to biodegradable pollutants present in wastewater, digest the pollutants using biochemical pathways different from the ones used in nature.
    Type: Grant
    Filed: May 4, 2020
    Date of Patent: June 29, 2021
    Inventors: Akiyoshi Ohki, Whitney Rich
  • Publication number: 20210130203
    Abstract: The efficiency of water disinfection can be significantly increased by supplying the ozone in combination with oxygen to an inlet of a cavitation pump or a line atomizer. A compressor can be introduced at an inlet of the cavitation pump or the line atomizer, compressing the gas mixture at a pressure higher than the pressure within pump or the atomizer. The compressed gases are provided to the inlet of the atomizer or the pump, where the compressed gases mix with the water and enter the cavitation pump or the line atomizer (where most of the dissolution of the gases happens). The compressor allows to increase the amount of oxygen and ozone provided to the pump or the line atomizer, increasing their dissolved concentration. In addition to the disinfecting properties, the higher level of oxygen correlates to an improved taste of the water.
    Type: Application
    Filed: December 21, 2020
    Publication date: May 6, 2021
    Inventors: Akiyoshi Ohki, Whitney Rich
  • Patent number: 10870595
    Abstract: The efficiency of water disinfection can be significantly increased by supplying the ozone in combination with oxygen to an inlet of a cavitation pump or a line atomizer. A compressor can be introduced at an inlet of the cavitation pump or the line atomizer, compressing the gas mixture at a pressure higher than the pressure within pump or the atomizer. The compressed gases are provided to the inlet of the atomizer or the pump, where the compressed gases mix with the water and enter the cavitation pump or the line atomizer (where most of the dissolution of the gases happens). The compressor allows to increase the amount of oxygen and ozone provided to the pump or the line atomizer, increasing their dissolved concentration. In addition to the disinfecting properties, the higher level of oxygen correlates to an improved taste of the water.
    Type: Grant
    Filed: April 9, 2020
    Date of Patent: December 22, 2020
    Inventors: Akiyoshi Ohki, Whitney Rich
  • Publication number: 20200270155
    Abstract: Increased control and efficiency over the wastewater purification can be achieved through creating conditions that allow the operator to selectively prioritize the digestive function of microorganism in the activated sludge. The gas-dispersion return sludge is created using pure oxygen or oxygen containing trace amounts of ozone as a reactive gas, which is blended with return sludge to create a mixture of gas and liquid, which is passed through an atomizer or a cavitation pump to instantly render the reactive gas to an ultra-fine bubble state. At least a portion of the ultra-fine bubbles dissolve within the gas-dispersion return sludge, activating the dormant microorganisms. Due to a complete or an almost complete absence of biodegradable material in the gas-dispersion return sludge, the microorganism prioritize their digestive function, and when exposed to biodegradable pollutants present in wastewater, digest the pollutants using biochemical pathways different from the ones used in nature.
    Type: Application
    Filed: May 4, 2020
    Publication date: August 27, 2020
    Inventors: Akiyoshi Ohki, Whitney Rich
  • Publication number: 20200239341
    Abstract: The efficiency of water disinfection can be significantly increased by supplying the ozone in combination with oxygen to an inlet of a cavitation pump or a line atomizer. A compressor can be introduced at an inlet of the cavitation pump or the line atomizer, compressing the gas mixture at a pressure higher than the pressure within pump or the atomizer. The compressed gases are provided to the inlet of the atomizer or the pump, where the compressed gases mix with the water and enter the cavitation pump or the line atomizer (where most of the dissolution of the gases happens). The compressor allows to increase the amount of oxygen and ozone provided to the pump or the line atomizer, increasing their dissolved concentration. In addition to the disinfecting properties, the higher level of oxygen correlates to an improved taste of the water.
    Type: Application
    Filed: April 9, 2020
    Publication date: July 30, 2020
    Inventors: Akiyoshi Ohki, Whitney Rich
  • Patent number: 10689276
    Abstract: The efficiency of water disinfection can be significantly increased by supplying the ozone in combination with oxygen to an inlet of a cavitation pump. The ozone and the oxygen are turned into ultra-fine bubbles via cavitation action within the pump, facilitating the dissolution of the oxygen and ozone within the water. The water mixed with the oxygen and the ozone is subsequently supplied to a line atomizer, where the dissolution of the ozone within the mixture is completed. The combined use of the cavitation pump and the line atomizer can lead to a substantially complete dissolution of the supplied ozone within water that needs to be disinfected, allowing to easily achieve the concentration of ozone necessary for water disinfection. Due to this efficiency, the system and method described are highly scalable and suitable for water purification at water purification plants of various sizes.
    Type: Grant
    Filed: May 13, 2019
    Date of Patent: June 23, 2020
    Inventors: Akiyoshi Ohki, Whitney Rich
  • Patent number: 10689278
    Abstract: Control over the wastewater purification can be achieved through controlling delivery of gas-dispersion return sludge solely to an aerobic reaction vessel. The gas-dispersion return sludge is created using pure oxygen or oxygen containing trace amounts of ozone as a reactive gas, which is blended with return sludge to create a mixture of gas and liquid, which is pressurized with an atomizer pump, and then at a pressure of not more than approximately 5.5 MPa, the mixture is passed through an atomizer which uses cavitation or ultrasound at a frequency of less than 12,000 KHz to instantly render the reactive gas in the mixture to an ultra-fine bubble state. A portion of the gas is placed into a dissolved state, reaching a state of supersaturation with a high DO value of 20-40 mg/l, and causing the remaining ultra-fine bubbles to create an ultra-fine bubble condition.
    Type: Grant
    Filed: October 7, 2019
    Date of Patent: June 23, 2020
    Inventors: Akiyoshi Ohki, Kousuke Chiba, Whitney Rich
  • Patent number: 10689279
    Abstract: Increased control and efficiency over the wastewater purification can be achieved through creating conditions that allow to selectively prioritize the digestive function of microorganism in the activated sludge. The gas-dispersion return sludge is created using pure oxygen or oxygen containing trace amounts of ozone as a reactive gas, which is blended with return sludge to create a mixture of gas and liquid, which is passed through an atomizer or a cavitation pump to instantly render the reactive gas in the mixture to an ultra-fine bubble state. At least a portion of the ultra-fine bubbles dissolve within the gas-dispersion return sludge, activating the dormant microorganisms. Due to a complete or an almost complete absence of digestable organic material in the gas-dispersion return sludge, the microorganism prioritize their digestive function, and when exposed to organic pollutants present in wastewater, digest the pollutants into water and carbon dioxide at an increased rate.
    Type: Grant
    Filed: October 28, 2019
    Date of Patent: June 23, 2020
    Inventors: Akiyoshi Ohki, Whitney Rich
  • Publication number: 20200062625
    Abstract: Increased control and efficiency over the wastewater purification can be achieved through creating conditions that allow to selectively prioritize the digestive function of microorganism in the activated sludge. The gas-dispersion return sludge is created using pure oxygen or oxygen containing trace amounts of ozone as a reactive gas, which is blended with return sludge to create a mixture of gas and liquid, which is passed through an atomizer or a cavitation pump to instantly render the reactive gas in the mixture to an ultra-fine bubble state. At least a portion of the ultra-fine bubbles dissolve within the gas-dispersion return sludge, activating the dormant microorganisms. Due to a complete or an almost complete absence of digestable organic material in the gas-dispersion return sludge, the microorganism prioritize their digestive function, and when exposed to organic pollutants present in wastewater, digest the pollutants into water and carbon dioxide at an increased rate.
    Type: Application
    Filed: October 28, 2019
    Publication date: February 27, 2020
    Inventors: Akiyoshi Ohki, Whitney Rich
  • Publication number: 20200055757
    Abstract: Control over the wastewater purification can be achieved through controlling delivery of gas-dispersion return sludge solely to an aerobic reaction vessel. The gas-dispersion return sludge is created using pure oxygen or oxygen containing trace amounts of ozone as a reactive gas, which is blended with return sludge to create a mixture of gas and liquid, which is pressurized with an atomizer pump, and then at a pressure of not more than approximately 5.5 MPa, the mixture is passed through an atomizer which uses cavitation or ultrasound at a frequency of less than 12,000 KHz to instantly render the reactive gas in the mixture to an ultra-fine bubble state. A portion of the gas is placed into a dissolved state, reaching a state of supersaturation with a high DO value of 20-40 mg/l, and causing the remaining ultra-fine bubbles to create an ultra-fine bubble condition.
    Type: Application
    Filed: October 7, 2019
    Publication date: February 20, 2020
    Inventors: Akiyoshi Ohki, Kousuke Chiba, Whitney Rich
  • Publication number: 20200055755
    Abstract: The efficiency of water disinfection can be significantly increased by supplying the ozone in combination with oxygen to an inlet of a cavitation pump. The ozone and the oxygen are turned into ultra-fine bubbles via cavitation action within the pump, facilitating the dissolution of the oxygen and ozone within the water. The water mixed with the oxygen and the ozone is subsequently supplied to a line atomizer, where the dissolution of the ozone within the mixture is completed. The combined use of the cavitation pump and the line atomizer can lead to a substantially complete dissolution of the supplied ozone within water that needs to be disinfected, allowing to easily achieve the concentration of ozone necessary for water disinfection. Due to this efficiency, the system and method described are highly scalable and suitable for water purification at water purification plants of various sizes.
    Type: Application
    Filed: May 13, 2019
    Publication date: February 20, 2020
    Inventors: Akiyoshi Ohki, Whitney Rich
  • Patent number: 10457582
    Abstract: Increased control and efficiency over the wastewater purification can be achieved through creating conditions that allow selective prioritization of the digestive function of microorganisms in the activated sludge. The gas-dispersion return sludge is created using pure oxygen or oxygen containing trace amounts of ozone as a reactive gas, which is blended with return sludge to create a mixture of gas and liquid, which is passed through an atomizer or a cavitation pump to instantly render the reactive gas in the mixture to an ultra-fine bubble state. At least a portion of the ultra-fine bubbles dissolve within the gas-dispersion return sludge, activating the dormant microorganisms. Due to a complete or an almost complete absence of digestable organic material in the gas-dispersion return sludge, the microorganisms prioritize their digestive function, and when exposed to organic pollutants present in wastewater, digest the pollutants into water and carbon dioxide at an increased rate.
    Type: Grant
    Filed: July 21, 2019
    Date of Patent: October 29, 2019
    Inventors: Akiyoshi Ohki, Whitney Rich
  • Publication number: 20190322559
    Abstract: Control over the wastewater purification can be achieved through controlling delivery of gas-dispersion return sludge solely to an aerobic reaction vessel. The gas-dispersion return sludge is created using pure oxygen or oxygen containing trace amounts of ozone as a reactive gas, which is blended with return sludge to create a mixture of gas and liquid, which is pressurized with an atomizer pump, and then at a pressure of not more than approximately 5.5 MPa, the mixture is passed through an atomizer which uses cavitation or ultrasound at a frequency of less than 12,000 KHz to instantly render the reactive gas in the mixture to an ultra-fine bubble state. A portion of the gas is placed into a dissolved state, reaching a state of supersaturation with a high DO value of 20-40 mg/l, and causing the remaining ultra-fine bubbles to create an ultra-fine bubble condition.
    Type: Application
    Filed: December 28, 2018
    Publication date: October 24, 2019
    Inventors: Akiyoshi Ohki, Kousuke Chiba, Whitney Rich
  • Patent number: 10435319
    Abstract: Control over the wastewater purification can be achieved through controlling delivery of gas-dispersion return sludge solely to an aerobic reaction vessel. The gas-dispersion return sludge is created using pure oxygen or oxygen containing trace amounts of ozone as a reactive gas, which is blended with return sludge to create a mixture of gas and liquid, which is pressurized with an atomizer pump, and then at a pressure of not more than approximately 5.5 MPa, the mixture is passed through an atomizer which uses cavitation or ultrasound at a frequency of less than 12,000 KHz to instantly render the reactive gas in the mixture to an ultra-fine bubble state. A portion of the gas is placed into a dissolved state, reaching a state of supersaturation with a high DO value of 20-40 mg/l, and causing the remaining ultra-fine bubbles to create an ultra-fine bubble condition.
    Type: Grant
    Filed: December 28, 2018
    Date of Patent: October 8, 2019
    Inventors: Akiyoshi Ohki, Kousuke Chiba, Whitney Rich
  • Patent number: 10287194
    Abstract: The efficiency of water disinfection can be significantly increased by supplying the ozone in combination with oxygen to an inlet of a cavitation pump. The ozone and the oxygen are turned into ultra-fine bubbles via cavitation action within the pump, facilitating the dissolution of the oxygen and ozone within the water. The water mixed with the oxygen and the ozone is subsequently supplied to a line atomizer, where the dissolution of the ozone within the mixture is completed. The combined use of the cavitation pump and the line atomizer can lead to a substantially complete dissolution of the supplied ozone within water that needs to be disinfected, allowing to easily achieve the concentration of ozone necessary for water disinfection. Due to this efficiency, the system and method described are highly scalable and suitable for water purification at water purification plants of various sizes.
    Type: Grant
    Filed: August 17, 2018
    Date of Patent: May 14, 2019
    Inventors: Akiyoshi Ohki, Whitney Rich
  • Patent number: 10167214
    Abstract: Control over the wastewater purification can be achieved through controlling delivery of gas-dispersion return sludge solely to an aerobic reaction vessel. The gas-dispersion return sludge is created using pure oxygen or oxygen containing trace amounts of ozone as a reactive gas, which is blended with return sludge to create a mixture of gas and liquid, which is pressurized with an atomizer pump, and then at a pressure of not more than approximately 5.5 MPa, the mixture is passed through an atomizer which uses cavitation or ultrasound at a frequency of less than 12,000 KHz to instantly render the reactive gas in the mixture to an ultra-fine bubble state. A portion of the gas is placed into a dissolved state, reaching a state of supersaturation with a high DO value of 20-40 mg/l, and causing the remaining ultra-fine bubbles to create an ultra-fine bubble condition.
    Type: Grant
    Filed: April 18, 2018
    Date of Patent: January 1, 2019
    Inventors: Akiyoshi Ohki, Kousuke Chiba, Whitney Rich