Patents by Inventor AKM Shah Newaz

AKM Shah Newaz has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150357503
    Abstract: The inventors disclose a new high performance optical sensor, preferably of nanoscale dimensions, that functions at room temperature based on an extraordinary optoconductance (EOC) phenomenon, and preferably an inverse EOC (I-EOC) phenomenon, in a metal-semiconductor hybrid (MSH) structure having a semiconductor/metal interface. Such a design shows efficient photon sensing not exhibited by bare semiconductors. In experimentation with an exemplary embodiment, ultrahigh spatial resolution 4-point optoconductance measurements using Helium-Neon laser radiation reveal a strikingly large optoconductance property, an observed maximum measurement of 9460% EOC, for a 250 nm device. Such an exemplary EOC device also demonstrates specific detectivity higher than 5.06×1011 cm?Hz/W for 632 nm illumination and a high dynamic response of 40 dB making such sensors technologically competitive for a wide range of practical applications.
    Type: Application
    Filed: August 17, 2015
    Publication date: December 10, 2015
    Inventors: Stuart A. Solin, Samuel A. Wickline, AKM Shah Newaz, Kirk D. Wallace
  • Patent number: 9111838
    Abstract: The inventors disclose a new high performance optical sensor, preferably of nanoscale dimensions, that functions at room temperature based on an extraordinary optoconductance (EOC) phenomenon, and preferably an inverse EOC (I-EOC) phenomenon, in a metal-semiconductor hybrid (MSH) structure having a semiconductor/metal interface. Such a design shows efficient photon sensing not exhibited by bare semiconductors. In experimentation with an exemplary embodiment, ultrahigh spatial resolution 4-point optoconductance measurements using Helium-Neon laser radiation reveal a strikingly large optoconductance property, an observed maximum measurement of 9460% EOC, for a 250 nm device. Such an exemplary EOC device also demonstrates specific detectivity higher than 5.06×1011 cm?Hz/W for 632 nm illumination and a high dynamic response of 40 dB making such sensors technologically competitive for a wide range of practical applications.
    Type: Grant
    Filed: June 18, 2013
    Date of Patent: August 18, 2015
    Assignee: Washington University
    Inventors: Stuart A. Solin, Samuel A. Wickline, AKM Shah Newaz, Kirk D. Wallace
  • Publication number: 20130278806
    Abstract: The inventors disclose a new high performance optical sensor, preferably of nanoscale dimensions, that functions at room temperature based on an extraordinary optoconductance (EOC) phenomenon, and preferably an inverse EOC (I-EOC) phenomenon, in a metal-semiconductor hybrid (MSH) structure having a semiconductor/metal interface. Such a design shows efficient photon sensing not exhibited by bare semiconductors. In experimentation with an exemplary embodiment, ultrahigh spatial resolution 4-point optoconductance measurements using Helium-Neon laser radiation reveal a strikingly large optoconductance property, an observed maximum measurement of 9460% EOC, for a 250 nm device. Such an exemplary EOC device also demonstrates specific detectivity higher than 5.06×1011 cm?Hz/W for 632 nm illumination and a high dynamic response of 40 dB making such sensors technologically competitive for a wide range of practical applications.
    Type: Application
    Filed: June 18, 2013
    Publication date: October 24, 2013
    Inventors: Stuart A. Solin, Samuel A. Wickline, AKM Shah Newaz, Kirk D. Wallace
  • Patent number: 8497459
    Abstract: The inventors disclose a new high performance optical sensor, preferably of nanoscale dimensions, that functions at room temperature based on an extraordinary optoconductance (EOC) phenomenon, and preferably an inverse EOC (I-EOC) phenomenon, in a metal-semiconductor hybrid (MSH) structure having a semiconductor/metal interface. Such a design shows efficient photon sensing not exhibited by bare semiconductors. In experimentation with an exemplary embodiment, ultrahigh spatial resolution 4-point optoconductance measurements using Helium-Neon laser radiation reveal a strikingly large optoconductance property, an observed maximum measurement of 9460% EOC, for a 250 nm device. Such an exemplary EOC device also demonstrates specific detectivity higher than 5.06×1011 cm?Hz/W for 632 nm illumination and a high dynamic response of 40 dB making such sensors technologically competitive for a wide range of practical applications.
    Type: Grant
    Filed: January 7, 2011
    Date of Patent: July 30, 2013
    Assignee: Washington University
    Inventors: Stuart A. Solin, Samuel A. Wickline, Akm Shah Newaz, Kirk D. Wallace
  • Publication number: 20110233382
    Abstract: The inventors disclose a new high performance optical sensor, preferably of nanoscale dimensions, that functions at room temperature based on an extraordinary optoconductance (EOC) phenomenon, and preferably an inverse EOC (I-EOC) phenomenon, in a metal-semiconductor hybrid (MSH) structure having a semiconductor/metal interface. Such a design shows efficient photon sensing not exhibited by bare semiconductors. In experimentation with an exemplary embodiment, ultrahigh spatial resolution 4-point optoconductance measurements using Helium-Neon laser radiation reveal a strikingly large optoconductance property, an observed maximum measurement of 9460% EOC, for a 250 nm device. Such an exemplary EOC device also demonstrates specific detectivity higher than 5.06×1011 cm?Hz/W for 632 nm illumination and a high dynamic response of 40 dB making such sensors technologically competitive for a wide range of practical applications.
    Type: Application
    Filed: January 7, 2011
    Publication date: September 29, 2011
    Inventors: Stuart A. Solin, Samuel A. Wickline, AKM Shah Newaz, Kirk D. Wallace