Patents by Inventor Akshat Jain

Akshat Jain has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10716186
    Abstract: A circuit includes a voltage converter converting a source voltage to a supply voltage at a first node as a function of a feedback voltage at a feedback node. A first output path is coupled between the first node and a second node. Feedback circuitry compares the voltage at the second node to first and second overvoltages, and selectively couples the second node to the feedback node based thereupon. Impedance circuitry is coupled between the first node and a third node. A light emitting diode (LED) chain is coupled to the third node, and is selectively turned on and off as a function of the selective coupling of the second node to the feedback node by the feedback circuitry.
    Type: Grant
    Filed: July 17, 2019
    Date of Patent: July 14, 2020
    Assignee: STMicroelectronics International N.V.
    Inventors: Akshat Jain, Ranajay Mallik
  • Publication number: 20190379277
    Abstract: Disclosed herein is a circuit including a transistor, with a resonant tank coupled between a DC supply node and a first conduction terminal of the transistor. A gate driver generates a gate drive signal for biasing a control terminal of the transistor to cause it to conduct current through the resonant tank. Control circuitry monitors a voltage across the transistor to determine that the transistor is an overvoltage condition if that voltage exceeds a threshold, and monitors a current through the transistor to determine that the transistor is an overcurrent condition if that current exceeds a threshold. If overvoltage is determined, the control circuitry causes the gate driver to pull up the gate drive signal. If overcurrent is determined, the control circuitry causes the gate driver to pull down the gate drive signal. If either overvoltage or overcurrent is present, a pulse width of the gate drive signal is reduced.
    Type: Application
    Filed: June 8, 2018
    Publication date: December 12, 2019
    Applicant: STMicroelectronics International N.V.
    Inventor: Akshat JAIN
  • Publication number: 20190342960
    Abstract: A circuit includes a voltage converter converting a source voltage to a supply voltage at a first node as a function of a feedback voltage at a feedback node. A first output path is coupled between the first node and a second node. Feedback circuitry compares the voltage at the second node to first and second overvoltages, and selectively couples the second node to the feedback node based thereupon. Impedance circuitry is coupled between the first node and a third node. A light emitting diode (LED) chain is coupled to the third node, and is selectively turned on and off as a function of the selective coupling of the second node to the feedback node by the feedback circuitry.
    Type: Application
    Filed: July 17, 2019
    Publication date: November 7, 2019
    Applicant: STMicroelectronics International N.V.
    Inventors: Akshat JAIN, Ranajay MALLIK
  • Patent number: 10405384
    Abstract: A circuit includes a voltage converter converting source voltage to supply voltage at a first node as a function of a feedback voltage at a feedback node. A first output path is coupled between first and second node nodes. Feedback circuitry couples the second node to the feedback node when a voltage at the second node exceeds a first overvoltage, in a first mode of operation. The feedback circuitry couples the second node to the feedback node when the voltage at the second node exceeds a second overvoltage less than the first overvoltage, in a second mode of operation. Impedance circuitry is coupled between the first node and a third node and generates an auxiliary supply voltage and an auxiliary ground voltage when the circuit is in both the first and second modes, the auxiliary supply voltage being less than the supply voltage in both the first and second modes.
    Type: Grant
    Filed: August 21, 2018
    Date of Patent: September 3, 2019
    Assignee: STMicroelectronics International N.V.
    Inventors: Akshat Jain, Ranajay Mallik
  • Publication number: 20190182922
    Abstract: A LED driving circuit includes a power factor correction circuit receiving a rectified mains voltage and providing output to a DC voltage bus, a string of LEDs connected in series, a voltage converter receiving input from the DC voltage bus and providing output to the string of LEDs, and a microcontroller. The microcontroller receives a plurality of digital feedback signals from the voltage converter, controls the voltage converter based upon a user desired brightness level and the plurality of digital feedback signals, and receive a plurality of feedback signals from the power factor correction circuit. Based on the plurality of feedback signals, the microcontroller operates the power factor correction circuit in transition mode where the user desired brightness level is above a threshold brightness, and operates the power factor correction circuit in discontinuous mode where the user desired brightness level is below the threshold brightness.
    Type: Application
    Filed: December 11, 2018
    Publication date: June 13, 2019
    Applicant: STMicroelectronics International N.V.
    Inventor: Akshat JAIN
  • Patent number: 10302695
    Abstract: Various embodiments provide a parallel checker to determine whether a device under test (DUT) is functioning properly or outputting erroneous bits. A test pattern or test data is injected into the DUT, and the parallel checker compares output data of the DUT to expected data stored in the parallel checker. The parallel checker determines an error in the event that a bit in the output data does not match in the expected data. The parallel checker is independent of test pattern length and data width at the parallel input of the parallel checker. Accordingly, the parallel checker may be used for multiple different test patterns, such as a PRBS 7, a CJTPAT, CRPAT, etc. Further, the parallel checker provides high-speed synchronization between data received from the DUT and expected test data stored in the parallel checker. In addition, the parallel checker consumes relatively low power and chip area in, for example, a SoC environment.
    Type: Grant
    Filed: October 30, 2017
    Date of Patent: May 28, 2019
    Assignee: STMICROELECTRONICS INTERNATIONAL N.V.
    Inventors: Tejinder Kumar, Akshat Jain
  • Publication number: 20190128960
    Abstract: Various embodiments provide a parallel checker to determine whether a device under test (DUT) is functioning properly or outputting erroneous bits. A test pattern or test data is injected into the DUT, and the parallel checker compares output data of the DUT to expected data stored in the parallel checker. The parallel checker determines an error in the event that a bit in the output data does not match in the expected data. The parallel checker is independent of test pattern length and data width at the parallel input of the parallel checker. Accordingly, the parallel checker may be used for multiple different test patterns, such as a PRBS 7, a CJTPAT, CRPAT, etc. Further, the parallel checker provides high-speed synchronization between data received from the DUT and expected test data stored in the parallel checker. In addition, the parallel checker consumes relatively low power and chip area in, for example, a SoC environment.
    Type: Application
    Filed: October 30, 2017
    Publication date: May 2, 2019
    Inventors: Tejinder KUMAR, Akshat JAIN
  • Publication number: 20190059135
    Abstract: A circuit includes a voltage converter converting source voltage to supply voltage at a first node as a function of a feedback voltage at a feedback node. A first output path is coupled between first and second node nodes. Feedback circuitry couples the second node to the feedback node when a voltage at the second node exceeds a first overvoltage, in a first mode of operation. The feedback circuitry couples the second node to the feedback node when the voltage at the second node exceeds a second overvoltage less than the first overvoltage, in a second mode of operation. Impedance circuitry is coupled between the first node and a third node and generates an auxiliary supply voltage and an auxiliary ground voltage when the circuit is in both the first and second modes, the auxiliary supply voltage being less than the supply voltage in both the first and second modes.
    Type: Application
    Filed: August 21, 2018
    Publication date: February 21, 2019
    Applicant: STMicroelectronics International N.V.
    Inventors: Akshat Jain, Ranajay Mallik
  • Patent number: 9331474
    Abstract: A drive transistor is connected to a resonant load in a low-side drive configuration. The voltage across the conduction terminals of the drive transistor is sensed and compared to an over-voltage threshold. An over-voltage signal is asserted in response to the comparison. The drive transistor is controlled by a PWM control signal in normal mode. In response to the assertion of the over-voltage signal, the drive transistor is forced to turn on (irrespective of the PWM control signal) to relieve the over-voltage condition. Operation of the circuit may be disabled or forced into soft start mode in response to the assertion of the over-voltage signal. Additionally, the pulse width of the PWM control signal may be reduced in response to the assertion of the over-voltage signal.
    Type: Grant
    Filed: October 8, 2014
    Date of Patent: May 3, 2016
    Assignees: STMICROELECTRONICS INTERNATIONAL N.V., STMICROELECTRONICS S.R.L.
    Inventors: Ranajay Mallik, Luigi Abbatelli, Giuseppe Catalisano, Akshat Jain
  • Publication number: 20160105017
    Abstract: A drive transistor is connected to a resonant load in a low-side drive configuration. The voltage across the conduction terminals of the drive transistor is sensed and compared to an over-voltage threshold. An over-voltage signal is asserted in response to the comparison. The drive transistor is controlled by a PWM control signal in normal mode. In response to the assertion of the over-voltage signal, the drive transistor is forced to turn on (irrespective of the PWM control signal) to relieve the over-voltage condition. Operation of the circuit may be disabled or forced into soft start mode in response to the assertion of the over-voltage signal. Additionally, the pulse width of the PWM control signal may be reduced in response to the assertion of the over-voltage signal.
    Type: Application
    Filed: October 8, 2014
    Publication date: April 14, 2016
    Applicants: STMICROELECTRONICS INTERNATIONAL N.V., STMICROELECTRONICS S.R.L.
    Inventors: Ranajay Mallik, Luigi Abbatelli, Giuseppe Catalisano, Akshat Jain
  • Patent number: 8745746
    Abstract: A computer-implemented method for addressing security vulnerabilities on computing devices may include 1) identifying a security vulnerability associated with a programmatic installation on a mobile computing platform, 2) querying, in response to identifying the security vulnerability, a database for a list of mobile computing devices that include both the programmatic installation and a security system capable of remedying security vulnerabilities, 3) generating a message to send to each mobile computing device within the list of mobile computing devices that includes a prompt to remedy the security vulnerability, and 4) prompting a user of each mobile computing device within the list of mobile computing devices to remedy the security vulnerability by transmitting the message to each mobile computing device within the list of mobile computing devices via a plurality of push notifications. Various other methods, systems, and computer-readable media are also disclosed.
    Type: Grant
    Filed: March 7, 2012
    Date of Patent: June 3, 2014
    Assignee: Symantec Corporation
    Inventor: Akshat Jain