Patents by Inventor Al R. Wolfe

Al R. Wolfe has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7829646
    Abstract: The present invention is directed to PE-100 ethylene copolymers and pipe made thereof having a Tabor abrasion between about 0.01 and about 0.001 grams lost/1000 revolutions. These copolymers are formed by contacting ethylene with at least one mono-1-olefin comonomer having from 2 to about 10 carbon atoms per molecule in a reaction zone under polymerization conditions in the presence of a hydrocarbon diluent, a catalyst system, and a cocatalyst. Additionally, the comonomers may be selected from mono-1-olefins having 4 to 10 carbon atoms, such as, 1-hexene, 1-butene, 4-methyl-1-pentene, 1-octene, and 1-decene. Further, these ethylene copolymers may be employed to produce PE-100 pipe having both small diameters and diameters in excess of 42 inches substantially without sagging or other gravitational deformation. Copolymers of ethylene and 1-hexene are disclosed which are used to produce PE-100 pipe.
    Type: Grant
    Filed: September 15, 2005
    Date of Patent: November 9, 2010
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Paul J. DesLauriers, Max P. McDaniel, Al R. Wolfe, Pamela L. Maeger, William R. Coutant, David C. Rohlfing, Steven J. Secora, William B. Beaulieu, Elizabeth A. Benham, David F. Register
  • Publication number: 20100144910
    Abstract: Catalyst systems for producing olefin polymers, methods of making such catalyst systems, and processes for producing olefin polymers using such catalyst systems are provided. The catalyst system comprises a first component and a second component, where the first component comprises chromium on a support, where the support comprises phosphated alumina, and the second component comprises: (1) a metal halide compound, a transition metal compound, and a precipitating agent, or (2) a substituted or unsubstituted dicyclopentadienyl chromium compound deposited onto a calcined oxide carrier, where the carrier includes silica, alumina, aluminophosphate, or any mixed oxide thereof.
    Type: Application
    Filed: February 11, 2010
    Publication date: June 10, 2010
    Applicant: Chevron Phillips Chemical Company LP
    Inventors: Max P. McDaniel, Elizabeth A. Benham, Al R. Wolfe
  • Publication number: 20090124768
    Abstract: Catalyst systems for producing olefin polymers, methods of making such catalyst systems, and processes for producing olefin polymers using such catalyst systems are provided. The catalyst system comprises a first component and a second component, where the first component comprises chromium on a support, where the support comprises phosphated alumina, and the second component comprises: (1) a metal halide compound, a transition metal compound, and a precipitating agent, or (2) a substituted or unsubstituted dicyclopentadienyl chromium compound deposited onto a calcined oxide carrier, where the carrier includes silica, alumina, aluminophosphate, or any mixed oxide thereof.
    Type: Application
    Filed: September 2, 2008
    Publication date: May 14, 2009
    Inventors: Max P. McDaniel, Elizabeth A. Benham, Al R. Wolfe
  • Patent number: 7271124
    Abstract: A process to produce ethylene polymers is provided.
    Type: Grant
    Filed: June 25, 2004
    Date of Patent: September 18, 2007
    Assignee: Phillips Petroleum Company
    Inventors: Max P. McDaniel, Elizabeth A. Benham, Al R. Wolfe
  • Patent number: 7208441
    Abstract: A copolymer of ethylene and a higher alpha olefin, preferably 1-hexene, can be produced using an activated chromium containing catalyst system and a cocatalyst selected from the group consisting of trialkylboron, trialkylsiloxyalutninum, and a combination of trialkylboron and thalkylaluminum compounds. The polymerization process must be carefully controlled to produce a copolymer resin having an exceptionally broad molecular weight distribution, extremely high PENT ESCR values, and a natural branch profile that impacts branching preferably into the high molecular weight portion of the polymer. The resulting copolymer resin is especially useful in high stiffness pipe applications.
    Type: Grant
    Filed: November 23, 2004
    Date of Patent: April 24, 2007
    Assignee: Chevron Philips Chemical Company LP
    Inventors: Elizabeth A. Benham, Paul J. DesLauriers, Max P. McDaniel, Al R. Wolfe
  • Patent number: 7071276
    Abstract: A process to produce ethylene polymers is provided.
    Type: Grant
    Filed: December 13, 2002
    Date of Patent: July 4, 2006
    Assignee: Phillips Petroleum Company
    Inventors: Max P. McDaniel, Elizabeth A. Benham, Al R. Wolfe
  • Patent number: 6875835
    Abstract: A copolymer of ethylene and a higher alpha olefin, preferably 1-hexene, can be produced using an activated chromium containing catalyst system and a cocatalyst selected from the group consisting of trialkylboron, trialkylsiloxyalutninum, and a combination of trialkylboron and thalkylaluminum compounds. The polymerization process must be carefully controlled to produce a copolymer resin having an exceptionally broad molecular weight distribution, extremely high PENT ESCR values, and a natural branch profile that impacts branching preferably into the high molecular weight portion of the polymer. The resulting copolymer resin is especially useful in high stiffness pipe applications.
    Type: Grant
    Filed: December 16, 2002
    Date of Patent: April 5, 2005
    Assignee: Phillips Petroleum Company
    Inventors: Max P. McDaniel, Elizabeth A. Benham, Al R. Wolfe, Paul J. DesLauriers
  • Patent number: 6867278
    Abstract: The present invention is directed to homo-polymers and copolymers of mono-1-olefins, a method of making such polymers,and uses of such polymers. Polymers of the present invention are formed by contacting at least one mono-1-olefin having from 2 to about 20 carbon atoms per molecule and at least one mono-1-olefin co-monomer having from 2 to about 10 carbon atoms per molecule in a reaction zone under polymerization conditions in the presence of a hydrocarbon diluent, a catalyst system, and a cocatalyst. In another aspect of the present invention, ethylene copolymers are employed to produce PE-100 pipe. Further, these ethylene copolymers may be employed to produce PE-100 pipe having both small diameters and diameters in excess of 42 inches substantially without sagging or other gravitational deformation. Copolymers of ethylene and 1-hexene are disclosed which are used to produce PE-100 pipe.
    Type: Grant
    Filed: February 24, 2003
    Date of Patent: March 15, 2005
    Assignee: Chevron Phillips Chemical Company
    Inventors: Max P. McDaniel, Elizabeth A. Benham, Al R. Wolfe, Paul J. DesLauriers, Pamela L. Meager, William R. Coutant, David C. Rohlfing, Steven J. Secora
  • Publication number: 20040254323
    Abstract: A process to produce ethylene polymers is provided.
    Type: Application
    Filed: June 25, 2004
    Publication date: December 16, 2004
    Inventors: Max P. McDaniel, Elizabeth A. Benham, Al R. Wolfe
  • Publication number: 20030236366
    Abstract: A copolymer of ethylene and a higher alpha olefin, preferably 1-hexene, can be produced using an activated chromium containing catalyst system and a cocatalyst selected from the group consisting of trialkylboron, trialkylsiloxyalutninum, and a combination of trialkylboron and thalkylaluminum compounds. The polymerization process must be carefully controlled to produce a copolymer resin having an exceptionally broad molecular weight distribution, extremely high PENT ESCR values, and a natural branch profile that impacts branching preferably into the high molecular weight portion of the polymer. The resulting copolymer resin is especially useful in high stiffness pipe applications.
    Type: Application
    Filed: December 16, 2002
    Publication date: December 25, 2003
    Inventors: Max P. McDaniel, Elizabeth A. Benham, Al R. Wolfe, Paul J. DesLauriers
  • Publication number: 20030199648
    Abstract: The present invention is directed to homo-polymers and copolymers of mono-1-olefins, a method of making such polymers, and uses of such polymers. Polymers of the present invention are formed by contacting at least one mono-1-olefin having from 2 to about 20 carbon atoms per molecule and at least one mono-1-olefin co-monomer having from 2 to about 10 carbon atoms per molecule in a reaction zone under polymerization conditions in the presence of a hydrocarbon diluent, a catalyst system, and a cocatalyst. The catalyst system of the present invention comprises a chromium source on an aluminophosphate support which has a phosphorous to aluminum mole ratio of less than about 0.3. Further, the catalyst system is treated with less than about 7 weight percent fluoride based on the weight of the support and is calcined. Cocatalyst are selected from trialkylboron compounds, triarylboron compounds, alkylaluminum compounds, and combinations thereof.
    Type: Application
    Filed: February 24, 2003
    Publication date: October 23, 2003
    Inventors: Max P. McDaniel, Elizabeth A. Benham, Al R. Wolfe, Paul J. DesLauriers, Pamela L. Meager, William R. Coutant, David C. Rohlfing, Steven J. Secora
  • Publication number: 20030162915
    Abstract: A process to produce ethylene polymers is provided.
    Type: Application
    Filed: December 13, 2002
    Publication date: August 28, 2003
    Inventors: Max P. McDaniel, Elizabeth A. Benham, Al R. Wolfe
  • Patent number: 6525148
    Abstract: A copolymer of ethylene and a higher alpha olefin, preferably 1-hexene, can be produced using an activated chromium containing catalyst system and a cocatalyst selected from the group consisting of trialkylboron, trialkylsiloxyaluminum, and a combination of trialkylboron and trialkylaluminum compounds. The polymerization process must be carefully controlled to produce a copolymer resin having an exceptionally broad molecular weight distribution, extremely high PENT ESCR values, and a natural branch profile that impacts branching preferably into the high molecular weight portion of the polymer. The resulting copolymer resin is especially useful in high stiffness pipe applications.
    Type: Grant
    Filed: August 18, 2000
    Date of Patent: February 25, 2003
    Assignee: Phillips Petroleum Company
    Inventors: Max P. McDaniel, Elizabeth A. Benham, Al R. Wolfe, Paul J. DesLauriers
  • Patent number: 6495638
    Abstract: A process is provided to produce a catalyst system. The process comprises blending a first component and a second component. The first component of the catalyst system comprises chromium on a support. The amount of chromium on the support is from about 0.05 to about 5 weight percent based on the weight of the support. The support comprises fluorided alumina. The support has a surface area from about 200 to about 550 square meters per gram and a pore volume from about 0.7 to about 2.5 cubic centimeters per gram. The first component is activated at a temperature in the range of about 500° C. to about 900° C. The second component is a transition metal halide catalyst. A process comprising polymerizing ethylene or copolymerizing ethylene and at least one other monomer using the catalyst system to produce ethylene polymers is also provided.
    Type: Grant
    Filed: December 30, 1998
    Date of Patent: December 17, 2002
    Assignee: Phillips Petroleum Company
    Inventors: Max P. McDaniel, Elizabeth A. Benham, Al R. Wolfe
  • Publication number: 20010001795
    Abstract: A process to produce ethylene polymers is provided.
    Type: Application
    Filed: December 30, 1998
    Publication date: May 24, 2001
    Inventors: MAX P. MCDANIEL, ELIZABETH A. BENHAM, AL R. WOLFE
  • Patent number: 6174981
    Abstract: Polymerization processes for ethylene and at least one mono-1-olefin comonomer having from about three to eight carbon atoms per molecule in the presence of a catalyst system comprising chromium supported on a silica-titania support and a trialkylboron compound is provided. Novel ethylene copolymers also are produced.
    Type: Grant
    Filed: December 17, 1998
    Date of Patent: January 16, 2001
    Assignee: Phillips Petroleum Company
    Inventors: Joseph J. Bergmeister, Al R. Wolfe, Steven J. Secora, Elizabeth A. Benham, William R. Coutant, Max P. McDaniel
  • Patent number: 5266616
    Abstract: This invention concerns a resin formulation for an organically pigment polyolefin resin suitable for tubing and pipe service. The resin formulation is comprised of ethylene polymers, a UV stabilizer, an antioxidant, and a tetrachloroisoindolinone pigment. The resulting resin possesses excellent heat stability and color fastness. The dilute concentration of organic pigment in the inventive formulation presents a cost acceptable alternative to the widely- and routinely-used cadmium- and lead-bearing dyes and pigments which are classified as toxic chemicals under SARA Title III Section 313.
    Type: Grant
    Filed: July 12, 1991
    Date of Patent: November 30, 1993
    Assignee: Phillips Petroleum Company
    Inventor: Al R. Wolfe
  • Patent number: 5102611
    Abstract: A process for forming plastic tubing which involves extruding a molten plastic composition through a die which produces an extended length of plastic tubing, passing the hot tubing through a vacuum sizing tube wherein the wall of the tubing is sized by being drawn to the wall of the sizing tube by a vacuum, and cooling the sized tubing so that the tubing will be self-supporting at normal ambient temperatures, wherein the plastic composition contains a phosphorus-containing additive in an amount sufficient to cause an improvement in the smoothness of the interior of said tubing.
    Type: Grant
    Filed: May 18, 1990
    Date of Patent: April 7, 1992
    Assignee: Phillips Petroleum Company
    Inventors: Al R. Wolfe, David R. Battiste, Harry E. Straw
  • Patent number: 4611024
    Abstract: A propylene polymer composition containing a clarifier and a small amount of a hydrotalcite to enhance the effect of the clarifier. The resulting composition is of particular value as an injection molding grade resin.
    Type: Grant
    Filed: February 14, 1985
    Date of Patent: September 9, 1986
    Assignee: Phillips Petroleum Co.
    Inventor: Al R. Wolfe