Patents by Inventor Alaa Makdissi

Alaa Makdissi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200259427
    Abstract: An autonomous implantable capsule comprises a capsule body provided with an element for its anchoring to a patient's organ. An electronic unit is powered by an energy harvesting module provided with a pendular unit comprising an inertial mass coupled to an elastic piezoelectric beam forming a mechanical-electrical transducer for converting into electrical energy the oscillations of the beam. A mobile support, integral with the clamped end of the beam and mobile in axial rotation about the axis of the capsule body, can be directed by a controllable driver to adjust the angular position of the support so as to maximize the produced electrical power converted by the mechanical-electrical transducer.
    Type: Application
    Filed: February 7, 2019
    Publication date: August 13, 2020
    Inventors: An NGUYEN-DINH, Alaa Makdissi, Willy Regnier
  • Publication number: 20190381325
    Abstract: The device includes an energy harvesting module with a pendular unit formed of an elastically deformable piezoelectric beam associated with an inertial mass. A multifunction part includes an axial through-recess with inner bearing surfaces opposite respective outer faces of the beam. These bearing surfaces having an increasing transverse spacing, such as, during an oscillation cycle, the beam comes into contact with one of the bearing surfaces, hence reducing the free length of the beam as the bending of the latter goes along. The multifunction part also allows rationalizing the manufacturing and the assembly of the capsule, with high-level integration of the inner components of the implant.
    Type: Application
    Filed: April 24, 2019
    Publication date: December 19, 2019
    Inventors: Willy REGNIER, Alaa Makdissi
  • Publication number: 20180214702
    Abstract: The disclosure relates to a device including a circuit for adjusting the energy of the stimulation pulses, independently controlling the pulse width and the voltage of each stimulation pulse. An iterative search algorithm for determining the optimum energy includes changing both the pulse width and voltage at each new pulse delivered, by setting a high energy value and a low energy value, and delivering a stimulation pulse with the low energy value. A capture test is then carried out. In the presence of a capture, a current iteration is complete and a new iteration is done with the current low energy as a new high energy value. In the absence of capture, the algorithm is terminated with selection of the last energy value that produced the capture as the value of optimum energy.
    Type: Application
    Filed: March 26, 2018
    Publication date: August 2, 2018
    Applicant: SORIN CRM SAS
    Inventor: Alaa Makdissi
  • Patent number: 9925383
    Abstract: The disclosure relates to a device including a circuit for adjusting the energy of the stimulation pulses, independently controlling the pulse width and the voltage of each stimulation pulse. An iterative search algorithm for determining the optimum energy includes changing both the pulse width and voltage at each new pulse delivered, by setting a high energy value and a low energy value, and delivering a stimulation pulse with the low energy value. A capture test is then carried out. In the presence of a capture, a current iteration is complete and a new iteration is done with the current low energy as a new high energy value. In the absence of capture, the algorithm is terminated with selection of the last energy value that produced the capture as the value of optimum energy.
    Type: Grant
    Filed: January 11, 2016
    Date of Patent: March 27, 2018
    Assignee: SORIN CRM SAS
    Inventor: Alaa Makdissi
  • Patent number: 9748986
    Abstract: An RF telemetry receiver circuit for active implantable medical devices. The baseband binary signal (Db) is doubly modulated by a low frequency carrier (Fm) and by a high frequency carrier (Fc). The receiver circuit is a semi-passive non heterodyne circuit, devoid of a local oscillator and mixer. It comprises an antenna (104), a passive bandpass filter (108) centered on the high-frequency carrier (Fc), a passive envelope detector (120-126) and a digital demodulator (116). The envelope detector comprises a first diode circuit (120) of non-coherent detection, an active bandpass filter (122) centered on a frequency (2.Fm) twice the low frequency carrier and having a bandwidth (2.Db) twice the baseband bandwidth, and a second diode circuit (124) of non-coherent detection, outputting a baseband signal applied to the digital demodulation stage (116).
    Type: Grant
    Filed: February 23, 2015
    Date of Patent: August 29, 2017
    Assignee: SORIN CRM SAS
    Inventor: Alaa Makdissi
  • Patent number: 9592394
    Abstract: The invention relates to a device incorporating an endocardial acceleration (EA) sensor. A capture test circuit of the device collects a sampled EA signal and extracts a limited series of EA measurements during a duration of a predetermined temporal window opened after delivery of a pacing pulse. An indicator value based on an average of absolute values of successive EA measurements of the series of EA measurements is calculated at an end of the temporal window. The indicator value is compared to a predetermined discrimination threshold to determine the presence or absence of a capture according to whether the indicator value lies above or below the predetermined discrimination threshold. The indicator value is very robust to noise and particularly efficient in terms of computing, which reduces, in large proportions, consumption of the digital processor and thus of the capsule.
    Type: Grant
    Filed: November 25, 2015
    Date of Patent: March 14, 2017
    Assignee: SORIN CRM SAS
    Inventor: Alaa Makdissi
  • Publication number: 20160199654
    Abstract: The disclosure relates to a device including a circuit for adjusting the energy of the stimulation pulses, independently controlling the pulse width and the voltage of each stimulation pulse. An iterative search algorithm for determining the optimum energy includes changing both the pulse width and voltage at each new pulse delivered, by setting a high energy value and a low energy value, and delivering a stimulation pulse with the low energy value. A capture test is then carried out. In the presence of a capture, a current iteration is complete and a new iteration is done with the current low energy as a new high energy value. In the absence of capture, the algorithm is terminated with selection of the last energy value that produced the capture as the value of optimum energy.
    Type: Application
    Filed: January 11, 2016
    Publication date: July 14, 2016
    Inventor: Alaa Makdissi
  • Publication number: 20160151632
    Abstract: The invention relates to a device incorporating an endocardial acceleration (EA) sensor. A capture test circuit of the device collects a sampled EA signal and extracts a limited series of EA measurements during a duration of a predetermined temporal window opened after delivery of a pacing pulse. An indicator value based on an average of absolute values of successive EA measurements of the series of EA measurements is calculated at an end of the temporal window. The indicator value is compared to a predetermined discrimination threshold to determine the presence or absence of a capture according to whether the indicator value lies above or below the predetermined discrimination threshold. The indicator value is very robust to noise and particularly efficient in terms of computing, which reduces, in large proportions, consumption of the digital processor and thus of the capsule.
    Type: Application
    Filed: November 25, 2015
    Publication date: June 2, 2016
    Inventor: Alaa Makdissi
  • Patent number: 9278212
    Abstract: A lead for an implantable cardiac prosthesis is disclosed. The lead has integrated protection against the effects of magnetic resonance imaging (“MRI”) fields. A protection circuit (26) may be placed at the distal end of the lead comprises a resistive component (28) interposed between the electrode (E1, E2) and the distal end of the conductor (22, 24) associated with this electrode. A normally-open controlled active switch (34, 36) may allow in its closed state to short-circuit the resistive component. A control stage (32) may be coupled to the conductors and detect the voltage of a stimulation pulse applied on the conductor(s), and selectively control by this voltage the closing of the active switch for a duration at least equal to the duration of detected stimulation pulse.
    Type: Grant
    Filed: September 11, 2014
    Date of Patent: March 8, 2016
    Assignee: SORIN CRM S.A.S.
    Inventor: Alaa Makdissi
  • Patent number: 9205267
    Abstract: A method for use by an active medical device includes using a stimulation device and an endocardial acceleration sensor to obtain a plurality of hemodynamic parameters associated with at least three atrioventricular delays. The method further includes using the plurality of hemodynamic parameters to find a second derivative associated with the atrioventricular delays. The method further includes using interpolation to estimate an atrioventricular delay which will reduce the second derivative associated with the atrioventricular delays. The method further includes using the estimated atrioventricular delay in a subsequent stimulation.
    Type: Grant
    Filed: July 22, 2013
    Date of Patent: December 8, 2015
    Assignee: SORIN CRM S.A.S.
    Inventor: Alaa Makdissi
  • Patent number: 9095716
    Abstract: A intracorporeal medical capsule is shown and described. The capsule includes an elastically deformable base having an anchor at one end and coupled to a capsule body at the opposite end. An energy harvesting element is elastically coupled to a seismic mass within the capsule body. The elastically deformable base increases energy harvested at the energy harvesting element due to elastic movement of the capsule body in the presence of blood flow around the capsule body.
    Type: Grant
    Filed: March 12, 2013
    Date of Patent: August 4, 2015
    Assignee: SORIN CRM SAS
    Inventors: Alaa Makdissi, Martin Deterre
  • Publication number: 20150171905
    Abstract: An RF telemetry receiver circuit for active implantable medical devices. The baseband binary signal (Db) is doubly modulated by a low frequency carrier (Fm) and by a high frequency carrier (Fc). The receiver circuit is a semi-passive non heterodyne circuit, devoid of a local oscillator and mixer. It comprises an antenna (104), a passive bandpass filter (108) centered on the high-frequency carrier (Fc), a passive envelope detector (120-126) and a digital demodulator (116). The envelope detector comprises a first diode circuit (120) of non-coherent detection, an active bandpass filter (122) centered on a frequency (2.Fm) twice the low frequency carrier and having a bandwidth (2.Db) twice the baseband bandwidth, and a second diode circuit (124) of non-coherent detection, outputting a baseband signal applied to the digital demodulation stage (116).
    Type: Application
    Filed: February 23, 2015
    Publication date: June 18, 2015
    Applicant: SORIN CRM SAS
    Inventor: Alaa Makdissi
  • Patent number: 9050008
    Abstract: An active medical device using non-linear filtering for the reconstruction of a surface electrocardiogram (ECG) from an endocardial electrogram (EGM) is disclosed. The device for the reconstruction of the surface ECG includes a plurality of inputs, receiving a corresponding plurality of EGM signals from endocardial or epicardial electrogram (x1[n], x2[n]), each collected on a respective EGM derivation of a plurality of EGM derivations, and at least one output delivering a reconstructed surface ECG electrocardiogram signal (y[n]), related to an ECG derivation, and a non-linear digital filter (12?, 12?, 14) with a transfer function that determines the reconstructed ECG signal based on said plurality of input EGM signals. The non-linear digital filter includes a Volterra filter type (12, 12?, 12?) whose transfer function includes a linear term (h1) and at least one quadratic (h2) and/or cubic (h3) term(s).
    Type: Grant
    Filed: September 22, 2014
    Date of Patent: June 9, 2015
    Assignee: SORIN CRM SAS
    Inventor: Alaa Makdissi
  • Patent number: 8963737
    Abstract: An RF telemetry receiver circuit for active implantable medical devices. The baseband binary signal (Db) is doubly modulated by a low frequency carrier (Fm) and by a high frequency carrier (Fc). The receiver circuit is a semi-passive non heterodyne circuit, devoid of a local oscillator and mixer. It comprises an antenna (104), a passive bandpass filter (108) centered on the high-frequency carrier (Fc), a passive envelope detector (120-126) and a, digital demodulator (116). The envelope detector comprises a first diode circuit (120) of non-coherent detection, an active bandpass filter (122) centered on a frequency (2.Fm) twice the low frequency carrier and having a bandwidth (2.Db) twice the baseband bandwidth, and a second diode circuit (124) of non-coherent detection, outputting a baseband signal applied to the digital demodulation stage (116).
    Type: Grant
    Filed: June 28, 2012
    Date of Patent: February 24, 2015
    Assignee: Sorin CRM SAS
    Inventor: Alaa Makdissi
  • Publication number: 20150011903
    Abstract: An active medical device using non-linear filtering for the reconstruction of a surface electrocardiogram (ECG) from an endocardial electrogram (EGM) is disclosed. The device for the reconstruction of the surface ECG includes a plurality of inputs, receiving a corresponding plurality of EGM signals from endocardial or epicardial electrogram (x1[n], x2[n]), each collected on a respective EGM derivation of a plurality of EGM derivations, and at least one output delivering a reconstructed surface ECG electrocardiogram signal (y[n]), related to an ECG derivation, and a non-linear digital filter (12?, 12?, 14) with a transfer function that determines the reconstructed ECG signal based on said plurality of input EGM signals. The non-linear digital filter includes a Volterra filter type (12, 12?, 12?) whose transfer function includes a linear term (h1) and at least one quadratic (h2) and/or cubic (h3) term(s).
    Type: Application
    Filed: September 22, 2014
    Publication date: January 8, 2015
    Applicant: SORIN CRM SAS
    Inventor: Alaa Makdissi
  • Publication number: 20150005861
    Abstract: A lead for an implantable cardiac prosthesis is disclosed. The lead has integrated protection against the effects of magnetic resonance imaging (“MRI”) fields. A protection circuit (26) may be placed at the distal end of the lead comprises a resistive component (28) interposed between the electrode (E1, E2) and the distal end of the conductor (22, 24) associated with this electrode. A normally-open controlled active switch (34, 36) may allow in its closed state to short-circuit the resistive component. A control stage (32) may be coupled to the conductors and detect the voltage of a stimulation pulse applied on the conductor(s), and selectively control by this voltage the closing of the active switch for a duration at least equal to the duration of detected stimulation pulse.
    Type: Application
    Filed: September 11, 2014
    Publication date: January 1, 2015
    Applicant: SORIN CRM S.A.S.
    Inventor: Alaa Makdissi
  • Patent number: 8923795
    Abstract: Systems, methods, and devices for activating an implantable medical device from a low-power sleep state are provided. One method includes receiving a wake-up signal at a receiver device from a transmitter device. The wake-up signal includes a series of pulses having a pulse pattern encoding a predetermined wake-up code. The wake-up signal is transmitted via intracorporeal communication of electrical pulses conducted by interstitial tissues of a patient's body. The method further includes extracting the wake-up code from the wake-up signal and determining whether the wake-up code corresponds to a stored wake-up value. The method further includes, in response to determining that the predetermined wake-up code corresponds to the stored wake-up value, switching at least one active circuit element of the receiver device from a lower-power sleep state into a higher-power operational state.
    Type: Grant
    Filed: October 22, 2013
    Date of Patent: December 30, 2014
    Assignee: Sorin CRM SAS
    Inventors: Alaa Makdissi, Karima Amara, Ashutosh Ghildiyal
  • Patent number: 8849383
    Abstract: An active medical device using non-linear filtering for the reconstruction of a surface electrocardiogram (ECG) from an endocardial electrogram (EGM) is disclosed. The device for the reconstruction of the surface ECG comprises: a plurality of inputs, receiving a corresponding plurality of EGM signals from endocardial or epicardial electrogram (x1[n], x2[n]), each collected on a respective EGM derivation of a plurality of EGM derivations, and at least one output delivering a reconstructed surface ECG electrocardiogram signal (y[n]), related to an ECG derivation, and a non-linear digital filter (12?, 12?, 14) with a transfer function that determines the reconstructed ECG signal based on said plurality of input EGM signals. The non-linear digital filter includes a Volterra filter type (12, 12?, 12?) whose transfer function includes a linear term (h1) and at least one quadratic (h2) and/or cubic (h3) term(s).
    Type: Grant
    Filed: September 9, 2013
    Date of Patent: September 30, 2014
    Assignee: Sorin CRM S.A.S.
    Inventor: Alaa Makdissi
  • Patent number: 8849413
    Abstract: A lead for an implantable cardiac prosthesis having an integrated protection against the effects of magnetic resonance imaging (“MRI”) fields. A protection circuit (26) may be placed at the distal end of the lead comprises a resistive component (28) interposed between the electrode (E1, E2) and the distal end of the conductor (22, 24) associated with this electrode. A normally-open controlled active switch (34, 36) may allow in its closed state to short-circuit the resistive component. A control stage (32) may be coupled to the conductors and detect the voltage of a stimulation pulse applied on the conductor(s), and selectively control by this voltage the closing of the active switch for a duration at least equal to the duration of detected stimulation pulse.
    Type: Grant
    Filed: August 5, 2013
    Date of Patent: September 30, 2014
    Assignee: Sorin CRM S.A.S.
    Inventor: Alaa Makdissi
  • Publication number: 20140073894
    Abstract: An active medical device using non-linear filtering for the reconstruction of a surface electrocardiogram (ECG) from an endocardial electrogram (EGM) is disclosed. The device for the reconstruction of the surface ECG comprises: a plurality of inputs, receiving a corresponding plurality of EGM signals from endocardial or epicardial electrogram (x1[n], x2[n]), each collected on a respective EGM derivation of a plurality of EGM derivations, and at least one output delivering a reconstructed surface ECG electrocardiogram signal (y[n]), related to an ECG derivation, and a non-linear digital filter (12?, 12?, 14) with a transfer function that determines the reconstructed ECG signal based on said plurality of input EGM signals. The non-linear digital filter includes a Volterra filter type (12, 12?, 12?) whose transfer function includes a linear term (h1) and at least one quadratic (h2) and/or cubic (h3) term(s).
    Type: Application
    Filed: September 9, 2013
    Publication date: March 13, 2014
    Applicant: SORIN CRM S.A.S.
    Inventor: Alaa Makdissi