Patents by Inventor ALAIN A ADJORLOLO

ALAIN A ADJORLOLO has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230311427
    Abstract: Co-curable and co-cured UV/visible light-resistant fiberglass-coated UV/visible light composite structural material substrates, and aircraft fuselages comprising co-cured UV/visible light-resistant fiberglass-coated composite material substrates and methods of their manufacture are disclosed.
    Type: Application
    Filed: March 30, 2022
    Publication date: October 5, 2023
    Inventors: Alain A. Adjorlolo, Patrice K. Ackerman, Jason A. Bolles
  • Publication number: 20230312076
    Abstract: Co-curable and co-cured UV/visible light-resistant coated UV/visible light composite structural material substrates, and aircraft fuselages comprising co-cured UV/visible light-resistant coated composite material substrates and methods of their manufacture are disclosed.
    Type: Application
    Filed: February 20, 2023
    Publication date: October 5, 2023
    Inventors: Alain A. Adjorlolo, Patrice K. Ackerman, Jason A. Bolles
  • Publication number: 20230193051
    Abstract: A crystalline titanium and magnesium compound having an X-ray diffraction pattern having interplanar spacing (d-spacing) values at about 5.94, 3.10, 2.97, 2.10, 1.98, 1.82, and 1.74±0.1 angstroms may be used in protective coatings for metal or metal alloy substrates. The coatings exhibit excellent corrosion resistances and provide corrosion protection equal to or better than typical non-chromate coatings.
    Type: Application
    Filed: January 13, 2023
    Publication date: June 22, 2023
    Inventors: John J. Vajo, Jason Graetz, Alain A. Adjorlolo
  • Patent number: 11584859
    Abstract: A crystalline titanium and magnesium compound having an X-ray diffraction pattern having interplanar spacing (d-spacing) values at about 5.94, 3.10, 2.97, 2.10, 1.98, 1.82, and 1.74±0.1 angstroms may be used in protective coatings for metal or metal alloy substrates. The coatings exhibit excellent corrosion resistances and provide corrosion protection equal to or better than typical non-chromate coatings.
    Type: Grant
    Filed: August 15, 2019
    Date of Patent: February 21, 2023
    Assignee: The Boeing Company
    Inventors: John J. Vajo, Jason Graetz, Alain A. Adjorlolo
  • Patent number: 11084569
    Abstract: A method of forming a monolithic aircraft structure having multiple aerodynamic surfaces includes forming a body component to have a body skin defining a body skin outer surface, and a body side wall integrally formed with the body skin and defining a body mating surface, the body skin outer surface providing a first aerodynamic surface. A cover component is formed to have a cover mating surface and a cover outer surface opposite the cover mating surface, the cover outer surface defining a second aerodynamic surface. The body component is positioned relative to the cover component so that the body mating surface engages the cover mating surface. At least portions of the cover mating surface are friction stir welded to the body mating surface to form friction stir welded joints between the body component and the cover component.
    Type: Grant
    Filed: September 19, 2018
    Date of Patent: August 10, 2021
    Assignee: The Boeing Company
    Inventors: Michael P. Shemkunas, Lisa G. Schleuter, Bruce A. Dahl, Alain A. Adjorlolo
  • Publication number: 20210047522
    Abstract: A crystalline titanium and magnesium compound having an X-ray diffraction pattern having interplanar spacing (d-spacing) values at about 5.94, 3.10, 2.97, 2.10, 1.98, 1.82, and 1.74±0.1 angstroms may be used in protective coatings for metal or metal alloy substrates. The coatings exhibit excellent corrosion resistances and provide corrosion protection equal to or better than typical non-chromate coatings.
    Type: Application
    Filed: August 15, 2019
    Publication date: February 18, 2021
    Inventors: John J. VAJO, Jason Graetz, Alain A. Adjorlolo
  • Patent number: 10889072
    Abstract: The present disclosure is directed to a method of making a composite part. The method comprises covering a mold tool for a composite part with a parting film. The method further comprises laying up at least one layer of pre-preg on the parting film covering the mold tool to form a laid-up composite part and removing the laid-up composite part from the parting film. The parting film comprises a polymer sheet having a first major surface and a second major surface; and a first adhesive disposed on the first major surface of the polymer sheet, the first adhesive adhering the polymer sheet to the mold tool.
    Type: Grant
    Filed: June 3, 2019
    Date of Patent: January 12, 2021
    Assignee: The Boeing Company
    Inventors: Hardik Dalal, Alain A. Adjorlolo, Adam F. Gross, Andrew P. Nowak, Brad Andrew Coxon, Kurtis Willden, Daniel M. Rotter, Stephen Lee Metschan, Berryinne Decker
  • Patent number: 10858497
    Abstract: A low viscosity polysulfide sealant composition. The composition comprises a curable polysulfide polymer; a crosslinking agent; and a plurality of core-shell particles. The core-shell particles comprise: a core comprising a ferromagnetic material; and a shell comprising silica treated with an organic sulfur containing compound. The shell is capable of bonding with the polysulfide polymer.
    Type: Grant
    Filed: November 28, 2017
    Date of Patent: December 8, 2020
    Assignee: THE BOEING COMPANY
    Inventors: Andrew P. Nowak, Sophia S. Yang, Thomas I. Boundy, Darrin M. Hansen, Alain A. Adjorlolo, Carissa A. Pajel, Eliana V. Ghantous
  • Publication number: 20200216963
    Abstract: Aspects of the present disclosure provide titanium-based coatings and methods for making titanium-based coatings on surfaces. In at least one aspect, a coating includes an oxygen content, a fluorine content, a titanium content, and a sodium content. In one or more additional aspects, a coating includes titanium dioxide and Na5Ti3F14. In one or more additional aspects, a method of making a titanium-based coating includes contacting a substrate with a composition that includes from about 0.01 M to about 0.8 M of a titanium fluoride, from about 0.01 M to about 2 M of a sodium salt, and from about 0.1 M to about 1.5 M of a fluorine scavenger.
    Type: Application
    Filed: January 3, 2019
    Publication date: July 9, 2020
    Inventors: John J. Vajo, Alain A. ADJORLOLO, Jason A. GRAETZ
  • Publication number: 20200086975
    Abstract: A method of forming a monolithic aircraft structure having multiple aerodynamic surfaces includes forming a body component to have a body skin defining a body skin outer surface, and a body side wall integrally formed with the body skin and defining a body mating surface, the body skin outer surface providing a first aerodynamic surface. A cover component is formed to have a cover mating surface and a cover outer surface opposite the cover mating surface, the cover outer surface defining a second aerodynamic surface. The body component is positioned relative to the cover component so that the body mating surface engages the cover mating surface. At least portions of the cover mating surface are friction stir welded to the body mating surface to form friction stir welded joints between the body component and the cover component.
    Type: Application
    Filed: September 19, 2018
    Publication date: March 19, 2020
    Applicant: The Boeing Company
    Inventors: Michael P. Shemkunas, Lisa G. Schleuter, Bruce A. Dahl, Alain A. Adjorlolo
  • Patent number: 10570246
    Abstract: Aspects described herein generally describe epoxy resins and methods of epoxy resin formation. In some embodiments, a resin includes the reaction product of one or more polythiols, one or more polyepoxides, one or more fillers and one or more amine catalysts. Polythiols have between two and about ten thiol moieties. Polyepoxides have between two and about ten epoxy moieties. One or more amine catalysts of the formula NR1R2R3, wherein each of R1, R2, and R3 is independently linear or branched C1-20 alkyl or two or more of R1, R2, and R3 combine to form cycloalkyl. The resin has a compressive strength of at least 14 ksi at 2% offset at 70° F. and at least 8 ksi at 2% offset at 190° F.
    Type: Grant
    Filed: July 27, 2018
    Date of Patent: February 25, 2020
    Assignee: THE BOEING COMPANY
    Inventors: Andrew Paul Nowak, April Rose Rodriguez, Thomas Ian Boundy, Carissa Ann Pajel, Alain A. Adjorlolo
  • Publication number: 20190283341
    Abstract: The present disclosure is directed to a method of making a composite part. The method comprises covering a mold tool for a composite part with a parting film. The method further comprises laying up at least one layer of pre-preg on the parting film covering the mold tool to form a layed-up composite part and removing the layed-up composite part from the parting film. The parting film comprises a polymer sheet having a first major surface and a second major surface; and a first adhesive disposed on the first major surface of the polymer sheet, the first adhesive adhering the polymer sheet to the mold tool.
    Type: Application
    Filed: June 3, 2019
    Publication date: September 19, 2019
    Applicant: The Boeing Company
    Inventors: Hardik Dalal, Alain A. Adjorlolo, Adam F. Gross, Andrew P. Nowak, Brad Andrew Coxon, Kurtis Willden, Daniel M. Rotter, Stephen Lee Metschan, Berryinne Decker
  • Patent number: 10308000
    Abstract: A method of making a composite part comprises covering a mold tool for a composite part with a parting film, the parting film comprising a polymer sheet and a pressure sensitive adhesive. The parting film is positioned so that the polymer sheet is between the mold tool and the pressure sensitive adhesive. At least one layer of pre-preg is layed up on the parting film covering the mold tool to form a layed-up composite part. The pre-preg comprises an adhesive. The layed-up composite part is removed from the parting film.
    Type: Grant
    Filed: May 24, 2016
    Date of Patent: June 4, 2019
    Assignee: The Boeing Company
    Inventors: Hardik Dalal, Alain A. Adjorlolo, Adam F. Gross, Elena M. Sherman, John J. Vajo, Andrew P. Nowak, Brad Andrew Coxon, Kurtis Willden, Daniel M. Rotter, Stephen Lee Metschan, Berryinne Decker
  • Patent number: 10246565
    Abstract: Methods for making and curing resin-based adhesives are disclosed using encapsulated amine accelerators activated by providing ultrasonic energy.
    Type: Grant
    Filed: March 24, 2015
    Date of Patent: April 2, 2019
    Assignee: The Boeing Company
    Inventors: Andrew P Nowak, Geoffrey P. McKnight, Carissa A. Pajel, Sophia S. Yang, Thomas I Boundy, April R. Rodriguez, Darrin M Hansen, Alain A Adjorlolo
  • Patent number: 10155062
    Abstract: The present disclosure is directed to a thermoresponsive adhesive material. The material comprises a linear, phase-separated polymer having fluorinated polymer units and hydrophobic polymer units. The fluorinated polymer units and the hydrophobic polymer units are randomly ordered along the polymer. The hydrophobic polymer units include a first hydrophobic polymer unit and a second hydrophobic polymer unit. The first hydrophobic polymer unit is chosen from acrylate units or methacrylate units each substituted with one or more linear alkyl groups, linear alkenyl groups or a combination thereof, where at least one of the linear alkyl groups or alkenyl groups has 16 to 20 carbon atoms. The second hydrophobic polymer unit is chosen from acrylate units or methacrylate units each substituted with one or more linear alkyl groups, linear alkenyl groups or a combination thereof, where at least one of the linear alkyl or alkenyl groups of the second hydrophobic polymer unit has 5 to 14 carbon atoms.
    Type: Grant
    Filed: May 24, 2016
    Date of Patent: December 18, 2018
    Assignee: THE BOEING COMPANY
    Inventors: Hardik Dalal, Alain A. Adjorlolo, Adam F. Gross, Elena Sherman
  • Publication number: 20180340039
    Abstract: Aspects described herein generally describe epoxy resins and methods of epoxy resin formation. In some embodiments, a resin includes the reaction product of one or more polythiols, one or more polyepoxides, one or more fillers and one or more amine catalysts. Polythiols have between two and about ten thiol moieties. Polyepoxides have between two and about ten epoxy moieties. One or more amine catalysts of the formula NR1R2R3, wherein each of R1, R2, and R3 is independently linear or branched C1-20 alkyl or two or more of R1, R2, and R3 combine to form cycloalkyl. The resin has a compressive strength of at least 14 ksi at 2% offset at 70° F. and at least 8 ksi at 2% offset at 190° F.
    Type: Application
    Filed: July 27, 2018
    Publication date: November 29, 2018
    Inventors: Andrew Paul NOWAK, April Rose RODRIGUEZ, Thomas Ian BOUNDY, Carissa Ann PAJEL, Alain A. ADJORLOLO
  • Patent number: 10035873
    Abstract: Aspects described herein generally describe epoxy resins and methods of epoxy resin formation. In some embodiments, a resin includes the reaction product of one or more polythiols, one or more polyepoxides, one or more fillers and one or more amine catalysts. Polythiols have between two and about ten thiol moieties. Polyepoxides have between two and about ten epoxy moieties. One or more amine catalysts of the formula NR1R2R3, wherein each of R1, R2, and R3 is independently linear or branched C1-20 alkyl or two or more of R1, R2, and R3 combine to form cycloalkyl. The resin has a compressive strength of at least 14 ksi at 2% offset at 70° F. and at least 8 ksi at 2% offset at 190° F.
    Type: Grant
    Filed: March 3, 2017
    Date of Patent: July 31, 2018
    Assignee: THE BOEING COMPANY
    Inventors: Andrew Paul Nowak, April Rose Rodriguez, Thomas Ian Boundy, Carissa Ann Pajel, Alain A. Adjorlolo
  • Publication number: 20180079885
    Abstract: A low viscosity polysulfide sealant composition. The composition comprises a curable polysulfide polymer; a crosslinking agent; and a plurality of core-shell particles. The core-shell particles comprise: a core comprising a ferromagnetic material; and a shell comprising silica treated with an organic sulfur containing compound. The shell is capable of bonding with the polysulfide polymer.
    Type: Application
    Filed: November 28, 2017
    Publication date: March 22, 2018
    Inventors: Andrew P. Nowak, Sophia S. Yang, Thomas I. Boundy, Darrin M. Hansen, Alain A. Adjorlolo, Carissa A. Pajel, Eliana V. Ghantous
  • Patent number: 9856359
    Abstract: A low viscosity polysulfide sealant composition. The composition comprises a curable polysulfide polymer; a crosslinking agent; and a plurality of core-shell particles. The core-shell particles comprise: a core comprising a ferromagnetic material; and a shell comprising silica treated with an organic sulfur containing compound. The shell is capable of bonding with the polysulfide polymer.
    Type: Grant
    Filed: April 8, 2015
    Date of Patent: January 2, 2018
    Assignee: THE BOEING COMPANY
    Inventors: Andrew P. Nowak, Sophia S. Yang, Thomas I. Boundy, Darrin M. Hansen, Alain A. Adjorlolo, Carissa A. Pajel, Eliana V. Ghantous
  • Publication number: 20170340769
    Abstract: The present disclosure is directed to a thermoresponsive adhesive material. The material comprises a linear, phase-separated polymer having fluorinated polymer units and hydrophobic polymer units. The fluorinated polymer units and the hydrophobic polymer units are randomly ordered along the polymer. The hydrophobic polymer units include a first hydrophobic polymer unit and a second hydrophobic polymer unit. The first hydrophobic polymer unit is chosen from acrylate units or methacrylate units each substituted with one or more linear alkyl groups, linear alkenyl groups or a combination thereof, where at least one of the linear alkyl groups or alkenyl groups has 16 to 20 carbon atoms. The second hydrophobic polymer unit is chosen from acrylate units or methacrylate units each substituted with one or more linear alkyl groups, linear alkenyl groups or a combination thereof, where at least one of the linear alkyl or alkenyl groups of the second hydrophobic polymer unit has 5 to 14 carbon atoms.
    Type: Application
    Filed: May 24, 2016
    Publication date: November 30, 2017
    Inventors: Hardik Dalal, Alain A. Adjorlolo, Adam F. Gross, Elena Sherman