Patents by Inventor Alain Bostel

Alain Bostel has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8276210
    Abstract: A tomographic atom probe uses electrical pulses applied to an electrode in order to carry out evaporation of the sample being analyzed. In order to produce these electrical pulses, the tomographic atom probe comprises a high-voltage generator connected to an electrode by an electrical connection comprising a chip of semiconductor material. The probe also comprises a light source which can be controlled in order to generate light pulses which are applied to the semiconductor chip. Throughout the illumination, the chip is rendered conductive, which puts the high-voltage generator and the electrode in electrical contact so that a potential step is applied to the latter. The probe also comprises means for applying a voltage step of opposite amplitude to the previous step at the end of a time interval ?t0, so that the electrode finally receives a voltage pulse of duration ?t0.
    Type: Grant
    Filed: October 13, 2009
    Date of Patent: September 25, 2012
    Assignees: Cameca, CNRS
    Inventors: François Vurpillot, Alain Bostel
  • Patent number: 8074292
    Abstract: The present invention concerns the enhancing of the mass resolution of wide angle tomographic atom probes. The invention consists of an atom probe also comprising a sample-holding device and a detector which are separated from one another by a distance L and enclosed in a chamber, an “Einzel” type electrostatic lens consisting of three electrodes arranged inside the chamber between the sample and the detector, to which electrical potentials are applied so as to form an electrical field that strongly focuses the beam of ions emitted by the sample under test when the probe is operating. According to the invention, the geometry of the electrodes is defined precisely so as to greatly limit the effects of the spherical aberration that affects the “Einzel” lens on the beam of ions, said spherical aberration being clearly sensitive when the lens is greatly polarized. The invention applies more particularly to the atom probes known as 3D atom probes.
    Type: Grant
    Filed: October 8, 2008
    Date of Patent: December 6, 2011
    Assignee: Cameca
    Inventors: Alain Bostel, Mikhail Yavor, Ludovic Renaud, Bernard Deconihout
  • Publication number: 20110260046
    Abstract: A tomographic atom probe uses electrical pulses applied to an electrode in order to carry out evaporation of the sample being analyzed. In order to produce these electrical pulses, the tomographic atom probe comprises a high-voltage generator connected to an electrode by an electrical connection comprising a chip of semiconductor material. The probe also comprises a light source which can be controlled in order to generate light pulses which are applied to the semiconductor chip. Throughout the illumination, the chip is rendered conductive, which puts the high-voltage generator and the electrode in electrical contact so that a potential step is applied to the latter. The probe also comprises means for applying a voltage step of opposite amplitude to the previous step at the end of a time interval ?t0, so that the electrode finally receives a voltage pulse of duration ?t0.
    Type: Application
    Filed: October 13, 2009
    Publication date: October 27, 2011
    Applicants: CNRS, CAMECA
    Inventors: François Vurpillot, Alain Bostel
  • Publication number: 20100223698
    Abstract: The present invention concerns the enhancing of the mass resolution of wide angle tomographic atom probes. The invention consists of an atom probe also comprising a sample-holding device and a detector which are separated from one another by a distance L and enclosed in a chamber, an “Einzel” type electrostatic lens consisting of three electrodes arranged inside the chamber between the sample and the detector, to which electrical potentials are applied so as to form an electrical field that strongly focuses the beam of ions emitted by the sample under test when the probe is operating. According to the invention, the geometry of the electrodes is defined precisely so as to greatly limit the effects of the spherical aberration that affects the “Einzel” lens on the beam of ions, said spherical aberration being clearly sensitive when the lens is greatly polarized. The invention applies more particularly to the atom probes known as 3D atom probes.
    Type: Application
    Filed: October 8, 2008
    Publication date: September 2, 2010
    Applicants: CAMECA, CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE
    Inventors: Alain Bostel, Mikhail Yavor, Ludovic Renaud, Bernard Deconihout
  • Patent number: 5969361
    Abstract: This detector comprises electron multiplication means (14) producing a cluster of electrons under the impact of each particle (2), a layer (6) that this cluster passes through, and which emits a light pulse by interaction with the layer, and transparent electron detection means (8) capable of determining the moment of impact of the particle and supplying information about the impact positions for each moment thus determined, so that these positions can be determined and correlated with the moments determined by the detection means.
    Type: Grant
    Filed: February 11, 1998
    Date of Patent: October 19, 1999
    Assignee: Centre National de la Recherche Scientifique
    Inventors: Didier Blavette, Alain Bostel, Bernard Deconihout