Patents by Inventor Alain Donzel

Alain Donzel has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8370088
    Abstract: The invention relates to a method for the real-time determination of the filling level of a cryogenic tank intended to house a two-phase liquid/gas mixture, in which at least one of the the level, volume or mass contained in the tank is calculated for the liquid or the gas at each time step. The method includes the use of a thermal model at each time step to calculate the average temperatures of the liquid and the gas in the tank on the basis of the measured pressure differential and at least one of the pressures of said differential; calculation of the change over time in at least the density of the liquid on the basis of the average temperature of the liquid and the pressures in the tank.
    Type: Grant
    Filed: October 16, 2008
    Date of Patent: February 5, 2013
    Assignee: L'Air Liquide Societe Anonyme pour l'Etude et l'Exploitation des Procedes Georges Claude
    Inventors: Fouad Ammouri, Florence Boutemy, Jonathan Macron, Alain Donzel
  • Patent number: 7933724
    Abstract: Method of tracking the performance of an industrial appliance (E), in which an estimate (We) of the quantity representing the electrical power consumed is calculated, in real-time, using the model (M), based on the values of the set (F) of operating parameters of the industrial appliance (E), the difference between the measured value (W) of the electrical power consumed (W) and the estimated value (We) provided by the model (M) is calculated, to obtain the overconsumption value, based on a statistical test on the overconsumption variable, using the distribution of this variable, an overconsumption score is deduced from this corresponding to a probability of overconsumption (p1) and an alarm is triggered if the probability of overconsumption (p1) exceeds a given overconsumption probability threshold (sp1), so constituting an overconsumption indicator.
    Type: Grant
    Filed: December 8, 2005
    Date of Patent: April 26, 2011
    Assignee: L'Air Liquide, Societe Anonyme a Directoire et Conseil de Surveillance pour l'Etude et l'Exploitation des Procedes Georges Claude
    Inventors: Caroline Drouart, Thierry Roba, Alain Donzel
  • Publication number: 20100241371
    Abstract: The invention relates to a method for the real-time determination of the filling level of a cryogenic tank (1) intended to house a two-phase liquid/gas mixture, in which at least one of the following variables is calculated for the liquid and optionally for the gas at each time step (t, t+ ?t . . . ), namely: the level, volume or mass contained in the tank (1), whereby, at each time step, the method includes the measurement of the pressure differential (DP=PB?PH) (in Pa) between the upper and lower parts of the tank and at least one of the pressures (PH, PI) of said differential. The invention is characterised in that the method includes the following steps: use of a thermal model at each time step (t, t+ ?t . . . ) to calculate the average temperatures of the liquid (Tl) and the gas (Tg) in the tank (1) on the basis of the measured pressure differential (PB?PH) and at least one of the pressures (PH, PI) of said differential; calculation of the change over time (t, t+ ?t . . .
    Type: Application
    Filed: October 16, 2008
    Publication date: September 23, 2010
    Inventors: Fouad Ammouri, Jonathan Macron, Alain Donzel
  • Patent number: 7229594
    Abstract: The invention provides a device for dispensing accurately-controlled small quantities of at least one liquid, comprising a liquid supply (L); a gas supply (G), arranged to selectively supply a gas pressure; and a capillary duct (20) adapted to be filled with liquid to be dispensed, and to eject the liquid. The device has a filling configuration wherein liquid from the supply is in contact with an end (20a) of the capillary duct to fill the capillary duct with liquid; and a liquid separation and ejection configuration, in which liquid remaining in the liquid supply is separated from liquid that fills the capillary duct to form a discrete quantity (V) of liquid filling the capillary duct (20) out of contact with the remaining liquid of the liquid supply. The capillary duct, filled with this discrete quantity (V) of liquid then has one end in contact with the gas supply and another end in contact with the atmosphere.
    Type: Grant
    Filed: April 3, 2001
    Date of Patent: June 12, 2007
    Assignee: Parabol Technologies S.A.
    Inventors: Philippe Renaud, Alain Donzel
  • Publication number: 20060155514
    Abstract: Method of tracking the performance of an industrial appliance (E), in which an estimate (We) of the quantity representing the electrical power consumed is calculated, in real-time, using the model (M), based on the values of the set (F) of operating parameters of the industrial appliance (E), the difference between the measured value (W) of the electrical power consumed (W) and the estimated value (We) provided by the model (M) is calculated, to obtain the overconsumption value, based on a statistical test on the overconsumption variable, using the distribution of this variable, an overconsumption score is deduced from this corresponding to a probability of overconsumption (p1) and an alarm is triggered if the probability of overconsumption (p1) exceeds a given overconsumption probability threshold (sp1), so constituting an overconsumption indicator.
    Type: Application
    Filed: December 8, 2005
    Publication date: July 13, 2006
    Inventors: Caroline Drouart, Thierry Roba, Alain Donzel
  • Publication number: 20030099577
    Abstract: The invention provides a device for dispensing accurately-controlled small quantities of at least one liquid, comprising a liquid supply (L); a gas supply (G), arranged to selectively supply a gas pressure; and a capillary duct (20) adapted to be filled with liquid to be dispensed, and to eject the liquid. The device has a filling configuration wherein liquid from the supply is in contact with an end (20a) of the capillary duct to fill the capillary duct with liquid; and a liquid separation and ejection configuration, in which liquid remaining in the liquid supply is separated from liquid that fills the capillary duct to form a discrete quantity (V) of liquid filling the capillary duct (20) out of contact with the remaining liquid of the liquid supply. The capillary duct, filled with this discrete quantity (V) of liquid then has one end in contact with the gas supply and another end in contact with the atmosphere. The discrete quantity of liquid (V).
    Type: Application
    Filed: September 26, 2002
    Publication date: May 29, 2003
    Inventors: Philippe Renaud, Alain Donzel