Patents by Inventor Alain F. Carpentier

Alain F. Carpentier has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20110301704
    Abstract: A remodeling mitral annuloplasty ring with a reduced anterior-to-posterior dimension to restore coaptation between the mitral leaflets in mitral valve insufficiency (IMVI). The ring has a generally oval shaped body with a major axis perpendicular to a minor axis, both perpendicular to a blood flow axis. An anterior section lies between anteriolateral and posteriomedial trigones, while a posterior section defines the remaining ring body and is divided into P1, P2, and P3 segments corresponding to the three scallops of the same nomenclature in the posterior leaflet of the mitral valve. The anterior-to-posterior dimension of the ring body is reduced from conventional rings; such as by providing, in atrial plan view, a pulled-in P3 segment. Viewed another way, the convexity of the P3 segment is less pronounced than the convexity of the P1 segment. In addition, the ring body may have a downwardly deflected portion in the posterior section, preferably within the P2 and P3 segments.
    Type: Application
    Filed: April 26, 2011
    Publication date: December 8, 2011
    Applicant: EDWARDS LIFESCIENCES CORPORATION
    Inventors: Ottavio Alfieri, Alain F. Carpentier, Francesco Maisano, Patrick McCarthy, Alberto Redaelli
  • Publication number: 20110238171
    Abstract: Annuloplasty rings optimally sized to take into account more of the common degenerative valve pathologies. Each ring has a structural ring body with a shape that complies with predicted shapes of degenerative valvular diseases, such as fibroelastic deficiency (FED), Marfan's or Barlow's. The predicted shapes are obtained through careful echocardiographic and intraoperative measurements, and often differ for different annulus orifice sizes. For instance, in mitral rings the larger rings have larger minor axis and oblique axis dimensions relative to their major axis dimensions, and are more circular as opposed to D-shaped. The rings may also be three-dimensional and the relative heights around the rings may change for different sized rings. A mitral ring may have a higher anterior saddle relative to a posterior saddle, with the relative heights varying across the ring sizes. The ring may have varying flexibility around the ring periphery which also changes for different ring sizes.
    Type: Application
    Filed: April 27, 2011
    Publication date: September 29, 2011
    Inventors: Alain F. Carpentier, David H. Adams, Vaso Adzich
  • Publication number: 20110224786
    Abstract: Annuloplasty rings optimally sized to take into account more of the common degenerative valve pathologies. Each ring has a structural ring body with a shape that complies with predicted shapes of degenerative valvular diseases, such as fibroelastic deficiency (FED), Marfan's or Barlow's. The predicted shapes are obtained through careful echocardiographic and intraoperative measurements, and often differ for different annulus orifice sizes. For instance, in mitral rings the larger rings have larger minor axis and oblique axis dimensions relative to their major axis dimensions, and are more circular as opposed to D-shaped. The rings may also be three-dimensional and the relative heights around the rings may change for different sized rings. A mitral ring may have a higher anterior saddle relative to a posterior saddle, with the relative heights varying across the ring sizes. The ring may have varying flexibility around the ring periphery which also changes for different ring sizes.
    Type: Application
    Filed: May 19, 2011
    Publication date: September 15, 2011
    Applicant: EDWARDS LIFESCIENCES CORPORATION
    Inventors: Alain F. Carpentier, David H. Adams, Vaso Adzich
  • Patent number: 7993393
    Abstract: A highly flexible tissue-type heart valve is disclosed having a structural stent in a generally cylindrical configuration with cusps and commissures that are permitted to move radially. The stent commissures are constructed so that the cusps are pivotably or flexibly coupled together at the commissures to permit relative movement therebetween. The stent may be cloth-covered and may be a single element or may be made in three separate elements for a three cusp valve, each element having a cusp portion and two commissure portions; adjacent commissure portions for each pair of adjacent stent element combining to form the stent commissures. If the stent has separate elements their commissure portions may be pivotably or flexible coupled, or may be designed to completely separate into independent leaflets at bioresorbable couples. The cloth covering may have an outwardly projecting flap that mates with valve leaflets (e.g., pericardial leaflets) along the cusps and commissures.
    Type: Grant
    Filed: September 10, 2009
    Date of Patent: August 9, 2011
    Assignee: Edwards Lifesciences Corporation
    Inventors: Alain F. Carpentier, Stefan G. Schreck, Richard S. Rhee, Diana Nguyen-Thien-Nhon, Hung Ly Lam, William J. Recktenwald, Robert Frater
  • Publication number: 20110160849
    Abstract: A prosthetic remodeling tricuspid annuloplasty ring having two free ends can be configured to more accurately mimic native valve anatomy (e.g., shape) and movement during the cardiac cycle. A tricuspid ring can be provided with a substantially elliptical shape in the X-Y plane, and a bimodal saddle shape in the Z direction. The tricuspid ring can be configured to contract and expand during each cardiac cycle such that the area of the orifice and/or the diameter of the ring decrease with each contraction. Further, the elevation or non-planarity of the bimodal saddle shape can increase with each contraction. Movement of the tricuspid ring can vary in each different segment of the tricuspid ring. Tricuspid annuloplasty rings can be provided in a set, with changing ratios of diameter, changing out-of-plane static amplitudes, and changing amounts of dynamic movement in each different size of tricuspid ring.
    Type: Application
    Filed: December 21, 2010
    Publication date: June 30, 2011
    Applicant: Edwards Lifesciences Corporation
    Inventors: Alain F. Carpentier, Alison S. Curtis
  • Patent number: 7959673
    Abstract: Annuloplasty rings optimally sized to take into account more of the common degenerative valve pathologies. Each ring has a structural ring body with a shape that complies with predicted shapes of degenerative valvular diseases, such as fibroelastic deficiency (FED), Marfan's or Barlow's. The predicted shapes are obtained through careful echocardiographic and intraoperative measurements, and often differ for different annulus orifice sizes. For instance, in mitral rings the larger rings have larger minor axis and oblique axis dimensions relative to their major axis dimensions, and are more circular as opposed to D-shaped. The rings may also be three-dimensional and the relative heights around the rings may change for different sized rings. A mitral ring may have a higher anterior saddle relative to a posterior saddle, with the relative heights varying across the ring sizes. The ring may have varying flexibility around the ring periphery which also changes for different ring sizes.
    Type: Grant
    Filed: September 11, 2008
    Date of Patent: June 14, 2011
    Assignee: Edwards Lifesciences Corporation
    Inventors: Alain F. Carpentier, David H. Adams, Vaso Adzich
  • Patent number: 7935145
    Abstract: A remodeling mitral annuloplasty ring with a reduced anterior-to-posterior dimension to restore coaptation between the mitral leaflets in mitral valve insufficiency (IMVI). The ring has a generally oval shaped body with a major axis perpendicular to a minor axis, both perpendicular to a blood flow axis. An anterior section lies between anteriolateral and posteriomedial trigones, while a posterior section defines the remaining ring body and is divided into P1, P2, and P3 segments corresponding to the three scallops of the same nomenclature in the posterior leaflet of the mitral valve. The anterior-to-posterior dimension of the ring body is reduced from conventional rings; such as by providing, in atrial plan view, a pulled-in P3 segment. Viewed another way, the convexity of the P3 segment is less pronounced than the convexity of the P1 segment. In addition, the ring body may have a downwardly deflected portion in the posterior section, preferably within the P2 and P3 segments.
    Type: Grant
    Filed: June 30, 2004
    Date of Patent: May 3, 2011
    Assignee: Edwards Lifesciences Corporation
    Inventors: Ottavio Alfieri, Alain F. Carpentier, Francesco Maisano, Patrick McCarthy, Alberto Redaelli
  • Publication number: 20110034999
    Abstract: Annuloplasty rings optimally sized to take into account more of the common degenerative valve pathologies. Each ring has a structural ring body with a shape that complies with predicted shapes of degenerative valvular diseases, such as fibroelastic deficiency (FED), Marfan's or Barlow's. The predicted shapes are obtained through careful echocardiographic and intraoperative measurements, and often differ for different annulus orifice sizes. For instance, in mitral rings the larger rings have larger minor axis and oblique axis dimensions relative to their major axis dimensions, and are more circular as opposed to D-shaped. The rings may also be three-dimensional and the relative heights around the rings may change for different sized rings. A mitral ring may have a higher anterior saddle relative to a posterior saddle, with the relative heights varying across the ring sizes. The ring may have varying flexibility around the ring periphery which also changes for different ring sizes.
    Type: Application
    Filed: August 16, 2010
    Publication date: February 10, 2011
    Applicant: Edwards Lifesciences Corporation
    Inventors: Alain F. Carpentier, David H. Adams, Vaso Adzich
  • Publication number: 20110015731
    Abstract: An anatomically approximate prosthetic heart valve includes dissimilar flexible leaflets, dissimilar commissures and/or a non-circular flow orifice. The heart valve may be implanted in the mitral position and have one larger leaflet oriented along the anterior aspect so as to mimic the natural anterior leaflet. Two other smaller leaflets extend around the posterior aspect of the valve. A basic structure providing peripheral support for the leaflets includes two taller commissures on both sides of the larger leaflet, with a third, smaller commissure between the other two leaflets. The larger leaflet may be thicker and/or stronger than the other two leaflets. The base structure defines a flow orifice intended to simulate the shape of the mitral annulus during the systolic phase. For example, the flow orifice may be elliptical.
    Type: Application
    Filed: September 23, 2010
    Publication date: January 20, 2011
    Applicant: Edwards Lifesciences Corporation
    Inventors: Alain F. Carpentier, Hung L. Lam
  • Patent number: 7871435
    Abstract: An anatomically approximate prosthetic heart valve includes dissimilar flexible leaflets, dissimilar commissures and/or a non-circular flow orifice. The heart valve may be implanted in the mitral position and have one larger leaflet oriented along the anterior aspect so as to mimic the natural anterior leaflet. Two other smaller leaflets extend around the posterior aspect of the valve. A basic structure providing peripheral support for the leaflets includes two taller commissures on both sides of the larger leaflet, with a third, smaller commissure between the other two leaflets. The larger leaflet may be thicker and/or stronger than the other two leaflets. The base structure defines a flow orifice intended to simulate the shape of the mitral annulus during the systolic phase. For example, the flow orifice may be elliptical.
    Type: Grant
    Filed: January 19, 2005
    Date of Patent: January 18, 2011
    Assignee: Edwards Lifesciences Corporation
    Inventors: Alain F. Carpentier, Hung L. Lam, Hugues La France
  • Publication number: 20100057193
    Abstract: A highly flexible tissue-type heart valve is disclosed having a structural stent in a generally cylindrical configuration with cusps and commissures that are permitted to move radially. The stent commissures are constructed so that the cusps are pivotably or flexibly coupled together at the commissures to permit relative movement therebetween. The stent may be cloth-covered and may be a single element or may be made in three separate elements for a three cusp valve, each element having a cusp portion and two commissure portions; adjacent commissure portions for each pair of adjacent stent element combining to form the stent commissures. If the stent has separate elements their commissure portions may be pivotably or flexible coupled, or may be designed to completely separate into independent leaflets at bioresorbable couples. The cloth covering may have an outwardly projecting flap that mates with valve leaflets (e.g., pericardial leaflets) along the cusps and commissures.
    Type: Application
    Filed: September 10, 2009
    Publication date: March 4, 2010
    Applicant: Edwards Lifesciences Corporation
    Inventors: Alain F. Carpentier, Stefan G. Schreck, Richard S. Rhee, Diana Nguyen-Thien-Nhon, Hung Ly Lam, William J. Recktenwald, Robert Frater
  • Publication number: 20090177276
    Abstract: Annuloplasty rings optimally sized to take into account more of the common degenerative valve pathologies. Each ring has a structural ring body with a shape that complies with predicted shapes of degenerative valvular diseases, such as fibroelastic deficiency (FED), Marfan's or Barlow's. The predicted shapes are obtained through careful echocardiographic and intraoperative measurements, and often differ for different annulus orifice sizes. For instance, in mitral rings the larger rings have larger minor axis and oblique axis dimensions relative to their major axis dimensions, and are more circular as opposed to D-shaped. The rings may also be three-dimensional and the relative heights around the rings may change for different sized rings. A mitral ring may have a higher anterior saddle relative to a posterior saddle, with the relative heights varying across the ring sizes. The ring may have varying flexibility around the ring periphery which also changes for different ring sizes.
    Type: Application
    Filed: September 11, 2008
    Publication date: July 9, 2009
    Applicant: Edwards Lifesciences Corporation
    Inventors: Alain F. Carpentier, David H. Adams, Vaso Adzich
  • Patent number: 7481838
    Abstract: A highly flexible tissue-type heart valve is disclosed having a structural stent in a generally cylindrical configuration with cusps and commissures that are permitted to move radially. The stent commissures are constructed so that the cusps are pivotably or flexibly coupled together at the commissures to permit relative movement therebetween.
    Type: Grant
    Filed: December 5, 2003
    Date of Patent: January 27, 2009
    Assignee: Edwards Lifesciences Corporation
    Inventors: Alain F. Carpentier, Stefan G. Schreck, Richard S. Rhee, Diana Nguyen-Thien-Nhon, Hung Ly Lam, William Recktenwald
  • Patent number: 7214344
    Abstract: A method of treating a biological tissue including contacting the biological tissue with an aqueous sterilizing solution, and maintaining the aqueous sterilizing solution at a temperature of about 50° C. for a time period of about 1 to 2 days. The method of treating a biological tissue may be utilized as a terminal sterilization step in a method for fixation of biological tissues, and bioprosthetic devices may be prepared by such fixation method. The fixation method may include the steps of A) fixing the tissue, B) treating the tissue with a mixture of i) a denaturant, ii) a surfactant and iii) a crosslinking agent, C) fabricating or forming the bioprosthesis (e.g., forming the tissue and attaching any non-biological components thereto) and D) subjecting the bioprosthesis to the terminal sterilization method. The aqueous sterilizing solution may be glutaraldehyde of about 0.625 weight percent buffered to a pH of about 7.4.
    Type: Grant
    Filed: January 14, 2003
    Date of Patent: May 8, 2007
    Assignee: Edwards Lifesciences Corporation
    Inventors: Alain F. Carpentier, Sophie Carpentier, Crystal M. Cunanan, Lillian J. Quintero, Michael N. Helmus, Christine Loshbaugh, H. Chris Sarner
  • Patent number: 7029434
    Abstract: A method for treating fixed biological tissue inhibits calcification of the biological tissue following implantation thereof in a mammalian body. The method includes placing the biological tissue in contact with glutaraldehyde and then heating the glutaraldehyde. Alternatively, methods other than heating (e.g., chemical or mechanical means), for effecting polymerization of the glutaraldehyde may also be utilized. Alternatively, the tissue may be heat treated prior to fixing thereof. Alternatively, methods other than glutaraldehyde may also be used for fixing the tissue. The biological tissue may be so treated at any time prior to implantation thereof in a mammalian body.
    Type: Grant
    Filed: February 5, 2003
    Date of Patent: April 18, 2006
    Assignee: Edwards Lifesciences Corporation
    Inventors: Sophie Carpentier, Alain F. Carpentier
  • Patent number: 6878168
    Abstract: Bioprosthetic tissues are treated by immersing or otherwise contacting fixed, unfixed or partially fixed tissue with a glutaraldehyde solution that has previously been heat-treated or pH adjusted prior to its contact with the tissue. The prior heat treating or pH adjustment of the glutaraldehyde solution causes its free aldehyde concentration to decrease by about 25% or more, preferably by as much as 50%, and allows a “stabilized” glutaraldehyde solution to be obtained at the desired concentration and pH for an optimal fixation of the tissue at high or low temperature. This treatment results in a decrease in the tissue's propensity to calcify after being implanted within the body of a human or animal patient.
    Type: Grant
    Filed: January 3, 2002
    Date of Patent: April 12, 2005
    Assignee: Edwards Lifesciences Corporation
    Inventors: Sophie M. Carpentier, Alain F. Carpentier
  • Publication number: 20040148018
    Abstract: A highly flexible tissue-type heart valve is disclosed having a structural stent in a generally cylindrical configuration with cusps and commissures that are permitted to move radially. The stent commissures are constructed so that the cusps are pivotably or flexibly coupled together at the commissures to permit relative movement therebetween. The stent may be cloth-covered and may be a single element or may be made in three separate elements for a three cusp valve, each element having a cusp portion and two commissure portions; adjacent commissure portions for each pair of adjacent stent element combining to form the stent commissures. If the stent has separate elements their commissure portions may be pivotably or flexible coupled, or may be designed to completely separate into independent leaflets at bioresorbable couples. The cloth covering may have an outwardly projecting flap that mates with valve leaflets (e.g., pericardial leaflets) along the cusps and commissures.
    Type: Application
    Filed: December 5, 2003
    Publication date: July 29, 2004
    Inventors: Alain F. Carpentier, Stefan G. Schreck, Richard S. Rhee, Diana Nguyen-Thien-Nhon, Hung Ly Lam, William Recktenwald
  • Publication number: 20040030405
    Abstract: A method for treating fixed biological tissue inhibits calcification of the biological tissue following implantation thereof in a mammalian body. The method includes placing the biological tissue in contact with glutaraldehyde and then heating the glutaraldehyde. Alternatively, methods other than heating (e.g., chemical or mechanical means), for effecting polymerization of the glutaraldehyde may also be utilized. Alternatively, the tissue may be heat treated prior to fixing thereof. Alternatively, methods other than glutaraldehyde may also be used for fixing the tissue. The biological tissue may be so treated at any time prior to implantation thereof in a mammalian body.
    Type: Application
    Filed: February 5, 2003
    Publication date: February 12, 2004
    Inventors: Sophie Carpentier, Alain F. Carpentier
  • Publication number: 20030226208
    Abstract: A method for fixation of biological tissues, and bioprosthetic devices prepared by such method. The method generally comprises the steps of A) fixing the tissue, B) treating the tissue with a mixture of i) a denaturant, ii) a surfactant and iii) a crosslinking agent, C) fabricating or forming the bioprosthesis (e.g., forming the tissue and attaching any non-biological components thereto) and D) subjecting the bioprosthesis to terminal sterilization.
    Type: Application
    Filed: January 14, 2003
    Publication date: December 11, 2003
    Inventors: Alain F. Carpentier, Sophie Carpentier, Crystal M. Cunanan, Lillian J. Quintero, Michael N. Helmus, Christine Loshbaugh, H. Chris Sarner
  • Patent number: RE40570
    Abstract: An apparatus for treating fixed biological tissue to inhibit calcification of the biological tissue following implantation thereof in a mammalian body. The apparatus includes a container for placing the biological tissue in contact with a treatment solution, structure to induce relative tissue/solution movement, and structure to heat the solution. The relative movement may be induced by shaking a container in which the tissue is immersed in the treatment solution, or by stirring the solution within the container. The movement may also be induced by flowing a treatment solution past the tissue to be treated. The tissue may be free to move in the treatment container, or may be restrained from gross movements. The flow may be part of a circulation system having a reservoir, with a heater being provided to heat the treatment solution in the reservoir. Alternatively, a treatment apparatus, including a fluid circulation system if desired, may be enclosed in an incubator.
    Type: Grant
    Filed: April 3, 2003
    Date of Patent: November 11, 2008
    Assignee: Edwards Lifesciences Corporation
    Inventors: Sophie Carpentier, Alain F. Carpentier, Lillian J. Quintero, Victor S. Packham, Jong H. Wang, Stefan G. Schreck