Patents by Inventor Alan A. Hale

Alan A. Hale has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10120025
    Abstract: Test circuits located on semiconductor die enable a tester to test a plurality of die/ICs in parallel by inputting both stimulus and response patterns to the plurality of die/ICs. The response patterns from the tester are input to the test circuits along with the output response of the die/IC to be compared. Also disclosed is the use of a response signal encoding scheme whereby the tester transmits response test commands to the test circuits, using a single signal per test circuit, to perform: (1) a compare die/IC output against an expected logic high, (2) a compare die/IC output against an expected logic low, and (3) a mask compare operation. The use of the signal encoding scheme allows functional testing of die and ICs since all response test commands (i.e. 1-3 above) required at each die/IC output can be transmitted to each die/IC output using only a single tester signal connection per die/IC output. In addition to functional testing, scan testing of die and ICs is also possible.
    Type: Grant
    Filed: October 27, 2017
    Date of Patent: November 6, 2018
    Assignee: Texas Instruments Incorporated
    Inventors: Lee D. Whetsel, Alan Hales
  • Publication number: 20180052202
    Abstract: Test circuits located on semiconductor die enable a tester to test a plurality of die/ICs in parallel by inputting both stimulus and response patterns to the plurality of die/ICs. The response patterns from the tester are input to the test circuits along with the output response of the die/IC to be compared. Also disclosed is the use of a response signal encoding scheme whereby the tester transmits response test commands to the test circuits, using a single signal per test circuit, to perform: (1) a compare die/IC output against an expected logic high, (2) a compare die/IC output against an expected logic low, and (3) a mask compare operation. The use of the signal encoding scheme allows functional testing of die and ICs since all response test commands (i.e. 1-3 above) required at each die/IC output can be transmitted to each die/IC output using only a single tester signal connection per die/IC output. In addition to functional testing, scan testing of die and ICs is also possible.
    Type: Application
    Filed: October 27, 2017
    Publication date: February 22, 2018
    Inventors: Lee D. Whetsel, Alan Hales
  • Patent number: 9829538
    Abstract: Test circuits located on semiconductor die enable a tester to test a plurality of die/ICs in parallel by inputting both stimulus and response patterns to the plurality of die/ICs. The response patterns from the tester are input to the test circuits along with the output response of the die/IC to be compared. Also disclosed is the use of a response signal encoding scheme whereby the tester transmits response test commands to the test circuits, using a single signal per test circuit, to perform: (1) a compare die/IC output against an expected logic high, (2) a compare die/IC output against an expected logic low, and (3) a mask compare operation. The use of the signal encoding scheme allows functional testing of die and ICs since all response test commands (i.e. 1-3 above) required at each die/IC output can be transmitted to each die/IC output using only a single tester signal connection per die/IC output. In addition to functional testing, scan testing of die and ICs is also possible.
    Type: Grant
    Filed: December 22, 2016
    Date of Patent: November 28, 2017
    Assignee: Texas Instruments Incorporated
    Inventors: Lee D. Whetsel, Alan Hales
  • Patent number: 9702935
    Abstract: Apparatus and method for testing an integrated circuit. An integrated circuit includes circuitry to be tested, scan chain logic, and a test adapter. The scan chain logic is configured to transfer test data to and test results from the circuitry. The test adapter is configured to extract the test data from a packet received from an automated test control system and to transfer the test data to the scan chain logic. The test adapter is also configured to receive the test results from the scan chain logic, and to packetize the test result for transmission to the automated test control system.
    Type: Grant
    Filed: August 29, 2014
    Date of Patent: July 11, 2017
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Lewis Nardini, Sumant Kale, Alan Hales
  • Publication number: 20170102430
    Abstract: Test circuits located on semiconductor die enable a tester to test a plurality of die/ICs in parallel by inputting both stimulus and response patterns to the plurality of die/ICs. The response patterns from the tester are input to the test circuits along with the output response of the die/IC to be compared. Also disclosed is the use of a response signal encoding scheme whereby the tester transmits response test commands to the test circuits, using a single signal per test circuit, to perform: (1) a compare die/IC output against an expected logic high, (2) a compare die/IC output against an expected logic low, and (3) a mask compare operation. The use of the signal encoding scheme allows functional testing of die and ICs since all response test commands (i.e. 1-3 above) required at each die/IC output can be transmitted to each die/IC output using only a single tester signal connection per die/IC output. In addition to functional testing, scan testing of die and ICs is also possible.
    Type: Application
    Filed: December 22, 2016
    Publication date: April 13, 2017
    Inventors: Lee D. Whetsel, Alan Hales
  • Patent number: 9562946
    Abstract: Test circuits located on semiconductor die enable a tester to test a plurality of die/ICs in parallel by inputting both stimulus and response patterns to the plurality of die/ICs. The response patterns from the tester are input to the test circuits along with the output response of the die/IC to be compared. Also disclosed is the use of a response signal encoding scheme whereby the tester transmits response test commands to the test circuits, using a single signal per test circuit, to perform: (1) a compare die/IC output against an expected logic high, (2) a compare die/IC output against an expected logic low, and (3) a mask compare operation. The use of the signal encoding scheme allows functional testing of die and ICs since all response test commands (i.e. 1-3 above) required at each die/IC output can be transmitted to each die/IC output using only a single tester signal connection per die/IC output. In addition to functional testing, scan testing of die and ICs is also possible.
    Type: Grant
    Filed: March 23, 2016
    Date of Patent: February 7, 2017
    Assignee: Texas Instruments Incorporated
    Inventors: Lee D. Whetsel, Alan Hales
  • Publication number: 20160202319
    Abstract: Test circuits located on semiconductor die enable a tester to test a plurality of die/ICs in parallel by inputting both stimulus and response patterns to the plurality of die/ICs. The response patterns from the tester are input to the test circuits along with the output response of the die/IC to be compared. Also disclosed is the use of a response signal encoding scheme whereby the tester transmits response test commands to the test circuits, using a single signal per test circuit, to perform: (1) a compare die/IC output against an expected logic high, (2) a compare die/IC output against an expected logic low, and (3) a mask compare operation. The use of the signal encoding scheme allows functional testing of die and ICs since all response test commands (i.e. 1-3 above) required at each die/IC output can be transmitted to each die/IC output using only a single tester signal connection per die/IC output. In addition to functional testing, scan testing of die and ICs is also possible.
    Type: Application
    Filed: March 23, 2016
    Publication date: July 14, 2016
    Inventors: Lee D. Whetsel, Alan Hales
  • Patent number: 9322879
    Abstract: Test circuits located on semiconductor die enable a tester to test a plurality of die/ICs in parallel by inputting both stimulus and response patterns to the plurality of die/ICs. The response patterns from the tester are input to the test circuits along with the output response of the die/IC to be compared. Also disclosed is the use of a response signal encoding scheme whereby the tester transmits response test commands to the test circuits, using a single signal per test circuit, to perform: (1) a compare die/IC output against an expected logic high, (2) a compare die/IC output against an expected logic low, and (3) a mask compare operation. The use of the signal encoding scheme allows functional testing of die and ICs since all response test commands (i.e. 1-3 above) required at each die/IC output can be transmitted to each die/IC output using only a single tester signal connection per die/IC output. In addition to functional testing, scan testing of die and ICs is also possible.
    Type: Grant
    Filed: July 6, 2015
    Date of Patent: April 26, 2016
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Lee D. Whetsel, Alan Hales
  • Publication number: 20150309117
    Abstract: Test circuits located on semiconductor die enable a tester to test a plurality of die/ICs in parallel by inputting both stimulus and response patterns to the plurality of die/ICs. The response patterns from the tester are input to the test circuits along with the output response of the die/IC to be compared. Also disclosed is the use of a response signal encoding scheme whereby the tester transmits response test commands to the test circuits, using a single signal per test circuit, to perform: (1) a compare die/IC output against an expected logic high, (2) a compare die/IC output against an expected logic low, and (3) a mask compare operation. The use of the signal encoding scheme allows functional testing of die and ICs since all response test commands (i.e. 1-3 above) required at each die/IC output can be transmitted to each die/IC output using only a single tester signal connection per die/IC output. In addition to functional testing, scan testing of die and ICs is also possible.
    Type: Application
    Filed: July 6, 2015
    Publication date: October 29, 2015
    Inventors: Lee D. Whetsel, Alan Hales
  • Patent number: 9103885
    Abstract: Test circuits located on semiconductor die enable a tester to test a plurality of die/ICs in parallel by inputting both stimulus and response patterns to the plurality of die/ICs. The response patterns from the tester are input to the test circuits along with the output response of the die/IC to be compared. Also disclosed is the use of a response signal encoding scheme whereby the tester transmits response test commands to the test circuits, using a single signal per test circuit, to perform: (1) a compare die/IC output against an expected logic high, (2) a compare die/IC output against an expected logic low, and (3) a mask compare operation. The use of the signal encoding scheme allows functional testing of die and ICs since all response test commands (i.e. 1-3 above) required at each die/IC output can be transmitted to each die/IC output using only a single tester signal connection per die/IC output. In addition to functional testing, scan testing of die and ICs is also possible.
    Type: Grant
    Filed: September 23, 2014
    Date of Patent: August 11, 2015
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Lee D. Whetsel, Alan Hales
  • Publication number: 20150067426
    Abstract: Apparatus and method for testing an integrated circuit. An integrated circuit includes circuitry to be tested, scan chain logic, and a test adapter. The scan chain logic is configured to transfer test data to and test results from the circuitry. The test adapter is configured to extract the test data from a packet received from an automated test control system and to transfer the test data to the scan chain logic. The test adapter is also configured to receive the test results from the scan chain logic, and to packetize the test result for transmission to the automated test control system.
    Type: Application
    Filed: August 29, 2014
    Publication date: March 5, 2015
    Inventors: Lewis Nardini, Sumant Kale, Alan Hales
  • Publication number: 20150012790
    Abstract: Test circuits located on semiconductor die enable a tester to test a plurality of die/ICs in parallel by inputting both stimulus and response patterns to the plurality of die/ICs. The response patterns from the tester are input to the test circuits along with the output response of the die/IC to be compared. Also disclosed is the use of a response signal encoding scheme whereby the tester transmits response test commands to the test circuits, using a single signal per test circuit, to perform: (1) a compare die/IC output against an expected logic high, (2) a compare die/IC output against an expected logic low, and (3) a mask compare operation. The use of the signal encoding scheme allows functional testing of die and ICs since all response test commands (i.e. 1-3 above) required at each die/IC output can be transmitted to each die/IC output using only a single tester signal connection per die/IC output. In addition to functional testing, scan testing of die and ICs is also possible.
    Type: Application
    Filed: September 23, 2014
    Publication date: January 8, 2015
    Applicant: Texas Instruments Incorporated
    Inventors: Lee D. Whetsel, Alan Hales
  • Publication number: 20140350111
    Abstract: Methods for treatment of and prophylaxis against hemorrhoids are disclosed, including methods of treatment of and prophylaxis against hemorrhoids comprising administering naproxen to an individual.
    Type: Application
    Filed: September 7, 2012
    Publication date: November 27, 2014
    Inventor: Guy Alan Hale
  • Patent number: 8872178
    Abstract: Test circuits located on semiconductor die enable a tester to test a plurality of die/ICs in parallel by inputting both stimulus and response patterns to the plurality of die/ICs. The response patterns from the tester are input to the test circuits along with the output response of the die/IC to be compared. Also disclosed is the use of a response signal encoding scheme whereby the tester transmits response test commands to the test circuits, using a single signal per test circuit, to perform: (1) a compare die/IC output against an expected logic high, (2) a compare die/IC output against an expected logic low, and (3) a mask compare operation. The use of the signal encoding scheme allows functional testing of die and ICs since all response test commands (i.e. 1-3 above) required at each die/IC output can be transmitted to each die/IC output using only a single tester signal connection per die/IC output. In addition to functional testing, scan testing of die and ICs is also possible.
    Type: Grant
    Filed: February 24, 2014
    Date of Patent: October 28, 2014
    Assignee: Texas Instruments Incorporated
    Inventors: Lee D. Whetsel, Alan Hales
  • Publication number: 20140167792
    Abstract: Test circuits located on semiconductor die enable a tester to test a plurality of die/ICs in parallel by inputting both stimulus and response patterns to the plurality of die/ICs. The response patterns from the tester are input to the test circuits along with the output response of the die/IC to be compared. Also disclosed is the use of a response signal encoding scheme whereby the tester transmits response test commands to the test circuits, using a single signal per test circuit, to perform: (1) a compare die/IC output against an expected logic high, (2) a compare die/IC output against an expected logic low, and (3) a mask compare operation. The use of the signal encoding scheme allows functional testing of die and ICs since all response test commands (i.e. 1-3 above) required at each die/IC output can be transmitted to each die/IC output using only a single tester signal connection per die/IC output. In addition to functional testing, scan testing of die and ICs is also possible.
    Type: Application
    Filed: February 24, 2014
    Publication date: June 19, 2014
    Applicant: Texas Instruments Incorporated
    Inventors: Lee D. Whetsel, Alan Hales
  • Patent number: 8692248
    Abstract: Test circuits located on semiconductor die enable a tester to test a plurality of die/ICs in parallel by inputting both stimulus and response patterns to the plurality of die/ICs. The response patterns from the tester are input to the test circuits along with the output response of the die/IC to be compared. Also disclosed is the use of a response signal encoding scheme whereby the tester transmits response test commands to the test circuits, using a single signal per test circuit, to perform: (1) a compare die/IC output against an expected logic high, (2) a compare die/IC output against an expected logic low, and (3) a mask compare operation. The use of the signal encoding scheme allows functional testing of die and ICs since all response test commands (i.e. 1-3 above) required at each die/IC output can be transmitted to each die/IC output using only a single tester signal connection per die/IC output. In addition to functional testing, scan testing of die and ICs is also possible.
    Type: Grant
    Filed: October 31, 2013
    Date of Patent: April 8, 2014
    Assignee: Texas Instruments Incorporated
    Inventors: Lee D. Whetsel, Alan Hales
  • Publication number: 20140055158
    Abstract: Test circuits located on semiconductor die enable a tester to test a plurality of die/ICs in parallel by inputting both stimulus and response patterns to the plurality of die/ICs. The response patterns from the tester are input to the test circuits along with the output response of the die/IC to be compared. Also disclosed is the use of a response signal encoding scheme whereby the tester transmits response test commands to the test circuits, using a single signal per test circuit, to perform: (1) a compare die/IC output against an expected logic high, (2) a compare die/IC output against an expected logic low, and (3) a mask compare operation. The use of the signal encoding scheme allows functional testing of die and ICs since all response test commands (i.e. 1-3 above) required at each die/IC output can be transmitted to each die/IC output using only a single tester signal connection per die/IC output. In addition to functional testing, scan testing of die and ICs is also possible.
    Type: Application
    Filed: October 31, 2013
    Publication date: February 27, 2014
    Applicant: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Lee D. Whetsel, Alan Hales
  • Patent number: 8604475
    Abstract: Test circuits located on semiconductor die enable a tester to test a plurality of die/ICs in parallel by inputting both stimulus and response patterns to the plurality of die/ICs. The response patterns from the tester are input to the test circuits along with the output response of the die/IC to be compared. Also disclosed is the use of a response signal encoding scheme whereby the tester transmits response test commands to the test circuits, using a single signal per test circuit, to perform: (1) a compare die/IC output against an expected logic high, (2) a compare die/IC output against an expected logic low, and (3) a mask compare operation. The use of the signal encoding scheme allows functional testing of die and ICs since all response test commands (i.e. 1-3 above) required at each die/IC output can be transmitted to each die/IC output using only a single tester signal connection per die/IC output. In addition to functional testing, scan testing of die and ICs is also possible.
    Type: Grant
    Filed: September 28, 2012
    Date of Patent: December 10, 2013
    Assignee: Texas Instruments Incorporated
    Inventors: Lee D. Whetsel, Alan Hales
  • Patent number: 8525565
    Abstract: A multibit combined multiplexer and flip-flop circuit has a plurality of bit circuits. Each bit circuit includes and input section, a flip-flop section and a per bit control section. The input sections have inputs for plural of input signals and corresponding input pass gates. The outputs of the input pass gates are connected to the input of the flip-flop section. Each per bit control section includes an inverter for each input terminal. There is a combined control section receiving a clock signal and a control signals for selection of only one of the input signals. The combined control section include a logical AND for each input signal combining the clock signal and the selection signal. The output of each logical AND is connected to the input of a corresponding inverter of each per bit control circuit. The input pass gate are controlled by a corresponding logical AND and said corresponding inverter.
    Type: Grant
    Filed: June 9, 2010
    Date of Patent: September 3, 2013
    Assignee: Texas Instruments Incorporated
    Inventors: Mujibur Rahman, Timothy D. Anderson, Alan Hales
  • Publication number: 20130169332
    Abstract: A multibit combined multiplexer and flip-flop circuit has a plurality of bit circuits. Each bit circuit includes and input section, a flip-flop section and a per bit control section. The input sections have inputs for plural of input signals and corresponding input pass gates. The outputs of the input pass gates are connected to the input of the flip-flop section. Each per bit control section includes an inverter for each input terminal. There is a combined control section receiving a clock signal and a control signals for selection of only one of the input signals. The combined control section include a logical AND for each input signal combining the clock signal and the selection signal. The output of each logical AND is connected to the input of a corresponding inverter of each per bit control circuit. The input pass gate are controlled by a corresponding logical AND and said corresponding inverter.
    Type: Application
    Filed: June 9, 2010
    Publication date: July 4, 2013
    Applicant: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Mujibur Rahman, Timothy D. Anderson, Alan Hales