Patents by Inventor ALAN B. MCMILLAN

ALAN B. MCMILLAN has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10520575
    Abstract: A system and method for an electron paramagnetic resonance imaging (EPRI) system includes a magnet configured to apply a static magnetic field to a subject to be imaged and a gradient coil configured to apply a magnetic field gradient to the static magnetic field. The system also includes a parallel plate waveguide (PPWG) configured to use a traveling wave to generate a radio frequency (RF) magnetic field over a volume of interest (VOI) in the subject to elicit EPRI data from the VOI and a processor configured to reconstruct the EPRI data into an image of the VOI.
    Type: Grant
    Filed: May 26, 2017
    Date of Patent: December 31, 2019
    Assignee: Wisconsin Alumni Research Foundation
    Inventors: Bahareh Behzadnezhad, Nader Behdad, Alan B. McMillan
  • Patent number: 10338180
    Abstract: A system and method for determining an actual gradient field generated by a magnetic resonance imaging (MRI) system when controlled to produce a prescribed gradient field is provided. The techniques include using the prescribed gradient field, controlling the MRI system to perform a phase encoding including a gradient that is scaled along each direction desired to be measured over a selected number of encoding times and acquiring one-dimensional (1D) data using a prescribed k-space trajectory during the phase encoding. The 1D data is used to determine scaling factors between encoding times that correlate to actual k-space trajectories achieved when controlling the gradient coils to perform the phase encoding based on the desired gradient field and a report is generated that provides a measure of the actual gradient field generated when controlling the MRI system to produce the prescribed gradient field.
    Type: Grant
    Filed: October 12, 2015
    Date of Patent: July 2, 2019
    Assignee: Wisconsin Alumni Research Foundation
    Inventors: Alan B. McMillan, Hyungseok Jang
  • Publication number: 20180340999
    Abstract: A system and method for an electron paramagnetic resonance imaging (EPRI) system includes a magnet configured to apply a static magnetic field to a subject to be imaged and a gradient coil configured to apply a magnetic field gradient to the static magnetic field. The system also includes a parallel plate waveguide (PPWG) configured to use a traveling wave to generate a radio frequency (RF) magnetic field over a volume of interest (VOI) in the subject to elicit EPRI data from the VOI and a processor configured to reconstruct the EPRI data into an image of the VOI.
    Type: Application
    Filed: May 26, 2017
    Publication date: November 29, 2018
    Inventors: Bahareh Behzadnezhad, Nader Behdad, Alan B. McMillan
  • Publication number: 20170102439
    Abstract: A system and method for determining an actual gradient field generated by a magnetic resonance imaging (MRI) system when controlled to produce a prescribed gradient field is provided. The techniques include using the prescribed gradient field, controlling the MRI system to perform a phase encoding including a gradient that is scaled along each direction desired to be measured over a selected number of encoding times and acquiring one-dimensional (1D) data using a prescribed k-space trajectory during the phase encoding. The 1D data is used to determine scaling factors between encoding times that correlate to actual k-space trajectories achieved when controlling the gradient coils to perform the phase encoding based on the desired gradient field and a report is generated that provides a measure of the actual gradient field generated when controlling the MRI system to produce the prescribed gradient field.
    Type: Application
    Filed: October 12, 2015
    Publication date: April 13, 2017
    Inventors: Alan B. McMillan, Hyungseok Jang
  • Patent number: 9326823
    Abstract: Telemetrical control of a robotic interventional device for minimally invasive surgical procedure is based on an operative interaction between a tracking sub-system, MRI sub-system, navigation sub-system and the robotic interventional device. The tracking sensor sub-system is integrated with the interventional device to produce tracking information corresponding to the robotic interventional device location in the operative site. The navigation sub-system integrates the tracking information with the real-time images of the operative site produced by the MRI sub-system, and displays the integrated information to a user, to enable the telemetrical control of the interventional device for performing an intended procedure (biopsy, tissue resection, etc.). The navigation sub-system, based on the integrated real-time tracking information and real-time images, calculates and dynamically updates coordinates of subsequent imaging slices.
    Type: Grant
    Filed: May 2, 2013
    Date of Patent: May 3, 2016
    Assignees: University of Maryland, College Park, University of Maryland, Baltimore
    Inventors: Alan B. McMillan, Rao Gullapalli, Howard M. Richard, III, Steven Roys, Jaydev P. Desai
  • Publication number: 20130296737
    Abstract: Telemetrical control of a robotic interventional device for minimally invasive surgical procedure is based on an operative interaction between a tracking sub-system, MRI sub-system, navigation sub-system and the robotic interventional device. The tracking sensor sub-system is integrated with the interventional device to produce tracking information corresponding to the robotic interventional device location in the operative site. The navigation sub-system integrates the tracking information with the real-time images of the operative site produced by the MRI sub-system, and displays the integrated information to a user, to enable the telemetrical control of the interventional device for performing an intended procedure (biopsy, tissue resection, etc.). The navigation sub-system, based on the integrated real-time tracking information and real-time images, calculates and dynamically updates coordinates of subsequent imaging slices.
    Type: Application
    Filed: May 2, 2013
    Publication date: November 7, 2013
    Inventors: ALAN B. MCMILLAN, RAO GULLAPALLI, HOWARD M. RICHARD, III, STEVEN ROYS, JAYDEV P. DESAI