Patents by Inventor Alan B. Vogel

Alan B. Vogel has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11932775
    Abstract: A curable coating composition is provided having multi-functionalized acrylic copolymer and silicone imine resin curing agents. The acrylic copolymer of the curable coating composition has, in polymerized form, epoxy functionalized groups and cure compatibility groups and the silicone imine forms an amino-functional silicone in the presence of water. The coating compositions are useful in the field of superior weatherable and durable coatings and are useful to replace isocyanate-containing polyurethane based coatings. Also provided are coated articles produced from the curable composition.
    Type: Grant
    Filed: July 17, 2019
    Date of Patent: March 19, 2024
    Assignees: Dow Global Technologies LLC, Dow Siliicones Corporation
    Inventors: Alan M. Piwowar, Ray E. Drumright, Erin B. Vogel, Gary M. Wieber, Patrick J. Fryfogle, Yanxiang Li, Susan M. Machelski, Paul J. Popa, Adam C. Tomasik, Gerald Lawrence Witucki
  • Patent number: 11730378
    Abstract: Computer implemented methods, systems and devices are provided to monitor for potential heart failure (HF). Cardiac activity (CA) data is obtained and filtered to obtain respiration data indicative of a respiration pattern. The respiration data is analyzed to determine one or more respiration characteristics of interest (COI) that are recorded along with collection time information to form an HF monitoring log. Additionally or alternatively, the CA data is analyzed to detect an event of interest. The cardiac activity data is filtered to obtain respiration data indicative of a respiration pattern, and the respiration data is analyzed for respiration induced under detection of the event of interest from the CA data.
    Type: Grant
    Filed: April 14, 2021
    Date of Patent: August 22, 2023
    Assignee: Pacesetter, Inc
    Inventors: Stephanie C. Sun, Xiaoyi Min, Alan B. Vogel, Fujian Qu, Stuart Rosenberg
  • Publication number: 20230261368
    Abstract: Methods for manufacturing implantable electronic devices include forming an antenna of the implantable electronic device by delivering an antenna trace within a dielectric antenna body. The antenna trace includes a first trace portion disposed in a first transverse layer and defining a first trace path and a second trace portion disposed in a second transverse layer longitudinally offset from the first transverse layer and defining a second trace path. If projected to be coplanar, the first trace path defines a trace boundary and the second trace path is within the trace boundary.
    Type: Application
    Filed: April 25, 2023
    Publication date: August 17, 2023
    Inventors: Armando M. Cappa, Jorge N. Amely-Velez, Alan B. Vogel, Wisit Lim, John R. Gonzalez, Alexander Robertson, Alex Soriano, Evan Sheldon, Perry Li, Jeffery Crook
  • Patent number: 11670843
    Abstract: Methods for manufacturing implantable electronic devices include forming an antenna of the implantable electronic device by delivering an antenna trace within a dielectric antenna body. The antenna trace includes a first trace portion disposed in a first transverse layer and defining a first trace path and a second trace portion disposed in a second transverse layer longitudinally offset from the first transverse layer and defining a second trace path. If projected to be coplanar, the first trace path defines a trace boundary and the second trace path is within the trace boundary.
    Type: Grant
    Filed: October 27, 2021
    Date of Patent: June 6, 2023
    Assignee: Pacesetter, Inc.
    Inventors: Armando M. Cappa, Jorge N. Amely-Velez, Alan B. Vogel, Wisit Lim, John R. Gonzalez, Alexander Robertson, Alex Soriano, Evan Sheldon, Perry Li, Jeffery Crook
  • Patent number: 11298083
    Abstract: An implantable cardiac monitor (ICM) and a computer implemented method are provided. The ICM includes electrodes that are configured to sense analog cardiac activity (CA) signals when engaged with tissue at a location remote from the heart. One or more of the electrodes transition between an engaged state and disengaged state with respect to the tissue. An analog to digital (A/D) converter communicates with the electrodes along a data signal path. The A/D converts the analog CA signals to digital CA signal. An electrode-tissue feedback (ETF) circuit is provided along the data signal path between the electrodes and the A/D converter. The ETF circuit generates a feedback signal component into the data signal path when one or more of the electrodes is in the disengaged state. The feedback signal component is superimposed onto the analog CA signals.
    Type: Grant
    Filed: September 16, 2019
    Date of Patent: April 12, 2022
    Assignee: PACESETTER, INC.
    Inventors: Fady Dawoud, Alan B. Vogel, Kurt Salek
  • Publication number: 20220052448
    Abstract: Methods for manufacturing implantable electronic devices include forming an antenna of the implantable electronic device by delivering an antenna trace within a dielectric antenna body. The antenna trace includes a first trace portion disposed in a first transverse layer and defining a first trace path and a second trace portion disposed in a second transverse layer longitudinally offset from the first transverse layer and defining a second trace path. If projected to be coplanar, the first trace path defines a trace boundary and the second trace path is within the trace boundary.
    Type: Application
    Filed: October 27, 2021
    Publication date: February 17, 2022
    Applicant: Pacesetter, Inc.
    Inventors: Armando M. Cappa, Jorge N. Amely-Velez, Alan B. Vogel, Wisit Lim, John R. Gonzalez, Alexander Robertson, Alex Soriano, Evan Sheldon, Perry Li, Jeffery Crook
  • Patent number: 11189915
    Abstract: Disclosed herein is an implantable electronic device including a housing containing an electrical circuit. The implantable electronic device further includes an antenna assembly coupled to the electrical circuit. The antenna assembly includes an antenna including a dielectric antenna body within which an antenna trace is disposed. Portions of the antenna trace are disposed in offset transverse layers in a non-overlapping arrangement, thereby reducing capacitive coupling between the layers of the antenna trace. In certain implementations, the antenna assembly includes one or more capacitive features that selectively overlap portions of the antenna trace and facilitate tuning of the antenna.
    Type: Grant
    Filed: January 27, 2020
    Date of Patent: November 30, 2021
    Assignee: Pacesetter, Inc.
    Inventors: Armando M. Cappa, Jorge N. Amely-Velez, Alan B. Vogel, Wisit Lim, John R. Gonzalez, Alexander Robertson, Alex Soriano, Evan Sheldon, Perry Li, Jeffery Crook
  • Publication number: 20210228093
    Abstract: Computer implemented methods, systems and devices are provided to monitor for potential heart failure (HF). Cardiac activity (CA) data is obtained and filtered to obtain respiration data indicative of a respiration pattern. The respiration data is analyzed to determine one or more respiration characteristics of interest (COI) that are recorded along with collection time information to form an HF monitoring log. Additionally or alternatively, the CA data is analyzed to detect an event of interest. The cardiac activity data is filtered to obtain respiration data indicative of a respiration pattern, and the respiration data is analyzed for respiration induced under detection of the event of interest from the CA data.
    Type: Application
    Filed: April 14, 2021
    Publication date: July 29, 2021
    Inventors: Stephanie C. Sun, Xiaoyi Min, Alan B. Vogel, Fujian Qu, Stuart Rosenberg
  • Patent number: 11000189
    Abstract: Computer implemented methods, systems and devices are provided to monitor for potential heart failure (HF). Cardiac activity (CA) data is obtained and filtered to obtain respiration data indicative of a respiration pattern. The respiration data is analyzed to determine one or more respiration characteristics of interest (COI) that are recorded along with collection time information to form an HF monitoring log. Additionally or alternatively, the CA data is analyzed to detect an event of interest. The cardiac activity data is filtered to obtain respiration data indicative of a respiration pattern, and the respiration data is analyzed for respiration induced under detection of the event of interest from the CA data.
    Type: Grant
    Filed: November 3, 2017
    Date of Patent: May 11, 2021
    Assignee: PACESETTER, INC.
    Inventors: Stephanie C. Sun, Xiaoyi Min, Alan B. Vogel, Fujian Qu, Stuart Rosenberg
  • Publication number: 20210077028
    Abstract: An implantable cardiac monitor (ICM) and a computer implemented method are provided. The ICM includes electrodes that are configured to sense analog cardiac activity (CA) signals when engaged with tissue at a location remote from the heart. One or more of the electrodes transition between an engaged state and disengaged state with respect to the tissue. An analog to digital (A/D) converter communicates with the electrodes along a data signal path. The A/D converts the analog CA signals to digital CA signal. An electrode-tissue feedback (ETF) circuit is provided along the data signal path between the electrodes and the A/D converter. The ETF circuit generates a feedback signal component into the data signal path when one or more of the electrodes is in the disengaged state. The feedback signal component is superimposed onto the analog CA signals.
    Type: Application
    Filed: September 16, 2019
    Publication date: March 18, 2021
    Inventors: Fady Dawoud, Alan B. Vogel, Kurt Salek
  • Publication number: 20200161750
    Abstract: Disclosed herein is an implantable electronic device including a housing containing an electrical circuit. The implantable electronic device further includes an antenna assembly coupled to the electrical circuit. The antenna assembly includes an antenna including a dielectric antenna body within which an antenna trace is disposed. Portions of the antenna trace are disposed in offset transverse layers in a non-overlapping arrangement, thereby reducing capacitive coupling between the layers of the antenna trace. In certain implementations, the antenna assembly includes one or more capacitive features that selectively overlap portions of the antenna trace and facilitate tuning of the antenna.
    Type: Application
    Filed: January 27, 2020
    Publication date: May 21, 2020
    Applicant: Pacesetter, Inc.
    Inventors: Armando M. Cappa, Jorge N. Amely-Velez, Alan B. Vogel, Wisit Lim, John R. Gonzalez, Alexander Robertson, Alex Soriano, Evan Sheldon, Perry Li, Jeffery Crook
  • Patent number: 10587038
    Abstract: Disclosed herein is an implantable electronic device having a housing containing an electrical circuit. The implantable electronic device further includes an antenna assembly coupled to the electrical circuit. The antenna assembly has an antenna with a dielectric antenna body within which an antenna trace is disposed. Portions of the antenna trace are disposed in offset transverse layers in a non-overlapping arrangement, thereby reducing capacitive coupling between the layers of the antenna trace. In certain implementations, the antenna assembly has one or more capacitive features that selectively overlap portions of the antenna trace and facilitate tuning of the antenna.
    Type: Grant
    Filed: June 26, 2017
    Date of Patent: March 10, 2020
    Assignee: Pacesetter, Inc.
    Inventors: Armando M. Cappa, Jorge N. Amely-Velez, Alan B. Vogel, Wisit Lim, John R. Gonzalez, Alexander Robertson, Alex Soriano, Evan Sheldon, Perry Li, Jeffery Crook
  • Publication number: 20190133457
    Abstract: Computer implemented methods, systems and devices are provided to monitor for potential heart failure (HF). Cardiac activity (CA) data is obtained and filtered to obtain respiration data indicative of a respiration pattern. The respiration data is analyzed to determine one or more respiration characteristics of interest (COI) that are recorded along with collection time information to form an HF monitoring log. Additionally or alternatively, the CA data is analyzed to detect an event of interest. The cardiac activity data is filtered to obtain respiration data indicative of a respiration pattern, and the respiration data is analyzed for respiration induced under detection of the event of interest from the CA data.
    Type: Application
    Filed: November 3, 2017
    Publication date: May 9, 2019
    Inventors: Stephanie C. Sun, Xiaoyi Min, Alan B. Vogel, Fujian Qu, Stuart Rosenberg
  • Publication number: 20180131085
    Abstract: Disclosed herein is an implantable electronic device having a housing containing an electrical circuit. The implantable electronic device further includes an antenna assembly coupled to the electrical circuit. The antenna assembly has an antenna with a dielectric antenna body within which an antenna trace is disposed. Portions of the antenna trace are disposed in offset transverse layers in a non-overlapping arrangement, thereby reducing capacitive coupling between the layers of the antenna trace. In certain implementations, the antenna assembly has one or more capacitive features that selectively overlap portions of the antenna trace and facilitate tuning of the antenna.
    Type: Application
    Filed: June 26, 2017
    Publication date: May 10, 2018
    Inventors: Armando M. Cappa, Jorge N. Amely-Velez, Alan B. Vogel, Wisit Lim, John R. Gonzalez, Alexander Robertson, Alex Soriano, Evan Sheldon, Perry Li, Jeffery Cook
  • Patent number: 8388670
    Abstract: Techniques are provided for equipping sensing/pacing leads with physiological sensors without requiring additional conductors within the leads. In a bipolar lead example for use with a pacemaker, a sensor is connected between tip and ring conductors of the lead. The sensor is configured to be activated only in response to enhanced pacing pulse (EPPs) having magnitudes or durations greater than typical pacing pulses or in response to impedance detection pulses (IMPs). In a unipolar example, the sensor is connected to the tip conductor and includes an output terminal on the external housing of the lead for providing a return current path to the pacemaker. The sensor of the unipolar lead is likewise configured to respond only to EPPs or IMPs. In other examples, the sensors are configured to be fitted to the external housing of the lead and to derive power from the lead via electromagnetic induction. Still other examples include actuators rather than sensors.
    Type: Grant
    Filed: January 16, 2007
    Date of Patent: March 5, 2013
    Assignee: Pacesetter, Inc.
    Inventors: Yongning Zou, James B. Hamilton, Alan B. Vogel, Chris Sorensen, Ryan Albu
  • Patent number: 8269635
    Abstract: An implantable medical device, such as a pacemaker or implantable cardioverter defibrillator (ICD), is configured to automatically detect ingestion of medications to verify that prescribed medications are taken in a timely manner and at the correct dosage. Briefly, individual pills are provided with miniature radio frequency identification (RFID) devices capable of transmitting RFID tag signals, which identify the medication contained within the pill and its dosage. The implanted device is equipped with an RFID transceiver for receiving tag signals from a pill as it is being ingested. The implanted system decodes the tag to identify the medication and its dosage, then accesses an onboard database to verify that the medication being ingested was in fact prescribed to the patient and to verify that the correct dosage was taken. Warning signals are generated if the wrong medication or the wrong dosage was taken. Therapy may also be automatically adjusted.
    Type: Grant
    Filed: February 12, 2010
    Date of Patent: September 18, 2012
    Assignee: Pacesetter, Inc.
    Inventors: Mark W. Kroll, Alan B. Vogel
  • Patent number: 8269636
    Abstract: An implantable medical device, such as a pacemaker or implantable cardioverter defibrillator (ICD), is configured to automatically detect ingestion of medications to verify that prescribed medications are taken in a timely manner and at the correct dosage. Briefly, individual pills are provided with miniature radio frequency identification (RFID) devices capable of transmitting RFID tag signals, which identify the medication contained within the pill and its dosage. The implanted device is equipped with an RFID transceiver for receiving tag signals from a pill as it is being ingested. The implanted system decodes the tag to identify the medication and its dosage, then accesses an onboard database to verify that the medication being ingested was in fact prescribed to the patient and to verify that the correct dosage was taken. Warning signals are generated if the wrong medication or the wrong dosage was taken. Therapy may also be automatically adjusted.
    Type: Grant
    Filed: January 24, 2011
    Date of Patent: September 18, 2012
    Assignee: Pacesetter, Inc.
    Inventors: Mark W. Kroll, Alan B. Vogel
  • Publication number: 20110124983
    Abstract: An implantable medical device, such as a pacemaker or implantable cardioverter defibrillator (ICD), is configured to automatically detect ingestion of medications to verify that prescribed medications are taken in a timely manner and at the correct dosage. Briefly, individual pills are provided with miniature radio frequency identification (RFID) devices capable of transmitting RFID tag signals, which identify the medication contained within the pill and its dosage. The implanted device is equipped with an RFID transceiver for receiving tag signals from a pill as it is being ingested. The implanted system decodes the tag to identify the medication and its dosage, then accesses an onboard database to verify that the medication being ingested was in fact prescribed to the patient and to verify that the correct dosage was taken. Warning signals are generated if the wrong medication or the wrong dosage was taken. Therapy may also be automatically adjusted.
    Type: Application
    Filed: January 24, 2011
    Publication date: May 26, 2011
    Applicant: PACESETTER, INC.
    Inventors: Mark W. Kroll, Alan B. Vogel
  • Patent number: 7876228
    Abstract: An implantable medical device, such as a pacemaker or implantable cardioverter defibrillator (ICD), is configured to automatically detect ingestion of medications to verify that prescribed medications are taken in a timely manner and at the correct dosage. Briefly, individual pills are provided with miniature radio frequency identification (RFID) devices capable of transmitting RFID tag signals, which identify the medication contained within the pill and its dosage. The implanted device is equipped with an RFID transceiver for receiving tag signals from a pill as it is being ingested. The implanted system decodes the tag to identify the medication and its dosage, then accesses an onboard database to verify that the medication being ingested was in fact prescribed to the patient and to verify that the correct dosage was taken. Warning signals are generated if the wrong medication or the wrong dosage was taken. Therapy may also be automatically adjusted.
    Type: Grant
    Filed: July 16, 2008
    Date of Patent: January 25, 2011
    Assignee: Pacesetter, Inc.
    Inventors: Mark W. Kroll, Alan B. Vogel
  • Patent number: 7753855
    Abstract: An implantable cardiac stimulation device determines sudden cardiac death susceptibility of a heart. The device comprises a first measuring circuit that measures intrinsic rest rate of the heart, a second measuring circuit that measures heart rate response of the heart and a third measuring circuit that measures heart rate recovery of the heart. The device further comprises a comparator that compares the measured intrinsic rest rate, the measured heart rate response, and the measured heart rate recovery to respective first, second, and third standards and a response circuit that provides a predetermined response when the comparisons of the measured intrinsic rest rate, the measured heart rate response, and the measured heart rate recovery to the respective standards indicate a susceptibility of sudden cardiac death.
    Type: Grant
    Filed: December 29, 2006
    Date of Patent: July 13, 2010
    Assignee: Pacesetter, Inc.
    Inventors: Alan B. Vogel, Chris Sorensen