Patents by Inventor Alan B. Vogel
Alan B. Vogel has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 11298083Abstract: An implantable cardiac monitor (ICM) and a computer implemented method are provided. The ICM includes electrodes that are configured to sense analog cardiac activity (CA) signals when engaged with tissue at a location remote from the heart. One or more of the electrodes transition between an engaged state and disengaged state with respect to the tissue. An analog to digital (A/D) converter communicates with the electrodes along a data signal path. The A/D converts the analog CA signals to digital CA signal. An electrode-tissue feedback (ETF) circuit is provided along the data signal path between the electrodes and the A/D converter. The ETF circuit generates a feedback signal component into the data signal path when one or more of the electrodes is in the disengaged state. The feedback signal component is superimposed onto the analog CA signals.Type: GrantFiled: September 16, 2019Date of Patent: April 12, 2022Assignee: PACESETTER, INC.Inventors: Fady Dawoud, Alan B. Vogel, Kurt Salek
-
Publication number: 20220052448Abstract: Methods for manufacturing implantable electronic devices include forming an antenna of the implantable electronic device by delivering an antenna trace within a dielectric antenna body. The antenna trace includes a first trace portion disposed in a first transverse layer and defining a first trace path and a second trace portion disposed in a second transverse layer longitudinally offset from the first transverse layer and defining a second trace path. If projected to be coplanar, the first trace path defines a trace boundary and the second trace path is within the trace boundary.Type: ApplicationFiled: October 27, 2021Publication date: February 17, 2022Applicant: Pacesetter, Inc.Inventors: Armando M. Cappa, Jorge N. Amely-Velez, Alan B. Vogel, Wisit Lim, John R. Gonzalez, Alexander Robertson, Alex Soriano, Evan Sheldon, Perry Li, Jeffery Crook
-
Patent number: 11189915Abstract: Disclosed herein is an implantable electronic device including a housing containing an electrical circuit. The implantable electronic device further includes an antenna assembly coupled to the electrical circuit. The antenna assembly includes an antenna including a dielectric antenna body within which an antenna trace is disposed. Portions of the antenna trace are disposed in offset transverse layers in a non-overlapping arrangement, thereby reducing capacitive coupling between the layers of the antenna trace. In certain implementations, the antenna assembly includes one or more capacitive features that selectively overlap portions of the antenna trace and facilitate tuning of the antenna.Type: GrantFiled: January 27, 2020Date of Patent: November 30, 2021Assignee: Pacesetter, Inc.Inventors: Armando M. Cappa, Jorge N. Amely-Velez, Alan B. Vogel, Wisit Lim, John R. Gonzalez, Alexander Robertson, Alex Soriano, Evan Sheldon, Perry Li, Jeffery Crook
-
Publication number: 20210228093Abstract: Computer implemented methods, systems and devices are provided to monitor for potential heart failure (HF). Cardiac activity (CA) data is obtained and filtered to obtain respiration data indicative of a respiration pattern. The respiration data is analyzed to determine one or more respiration characteristics of interest (COI) that are recorded along with collection time information to form an HF monitoring log. Additionally or alternatively, the CA data is analyzed to detect an event of interest. The cardiac activity data is filtered to obtain respiration data indicative of a respiration pattern, and the respiration data is analyzed for respiration induced under detection of the event of interest from the CA data.Type: ApplicationFiled: April 14, 2021Publication date: July 29, 2021Inventors: Stephanie C. Sun, Xiaoyi Min, Alan B. Vogel, Fujian Qu, Stuart Rosenberg
-
Patent number: 11000189Abstract: Computer implemented methods, systems and devices are provided to monitor for potential heart failure (HF). Cardiac activity (CA) data is obtained and filtered to obtain respiration data indicative of a respiration pattern. The respiration data is analyzed to determine one or more respiration characteristics of interest (COI) that are recorded along with collection time information to form an HF monitoring log. Additionally or alternatively, the CA data is analyzed to detect an event of interest. The cardiac activity data is filtered to obtain respiration data indicative of a respiration pattern, and the respiration data is analyzed for respiration induced under detection of the event of interest from the CA data.Type: GrantFiled: November 3, 2017Date of Patent: May 11, 2021Assignee: PACESETTER, INC.Inventors: Stephanie C. Sun, Xiaoyi Min, Alan B. Vogel, Fujian Qu, Stuart Rosenberg
-
Publication number: 20210077028Abstract: An implantable cardiac monitor (ICM) and a computer implemented method are provided. The ICM includes electrodes that are configured to sense analog cardiac activity (CA) signals when engaged with tissue at a location remote from the heart. One or more of the electrodes transition between an engaged state and disengaged state with respect to the tissue. An analog to digital (A/D) converter communicates with the electrodes along a data signal path. The A/D converts the analog CA signals to digital CA signal. An electrode-tissue feedback (ETF) circuit is provided along the data signal path between the electrodes and the A/D converter. The ETF circuit generates a feedback signal component into the data signal path when one or more of the electrodes is in the disengaged state. The feedback signal component is superimposed onto the analog CA signals.Type: ApplicationFiled: September 16, 2019Publication date: March 18, 2021Inventors: Fady Dawoud, Alan B. Vogel, Kurt Salek
-
Publication number: 20200161750Abstract: Disclosed herein is an implantable electronic device including a housing containing an electrical circuit. The implantable electronic device further includes an antenna assembly coupled to the electrical circuit. The antenna assembly includes an antenna including a dielectric antenna body within which an antenna trace is disposed. Portions of the antenna trace are disposed in offset transverse layers in a non-overlapping arrangement, thereby reducing capacitive coupling between the layers of the antenna trace. In certain implementations, the antenna assembly includes one or more capacitive features that selectively overlap portions of the antenna trace and facilitate tuning of the antenna.Type: ApplicationFiled: January 27, 2020Publication date: May 21, 2020Applicant: Pacesetter, Inc.Inventors: Armando M. Cappa, Jorge N. Amely-Velez, Alan B. Vogel, Wisit Lim, John R. Gonzalez, Alexander Robertson, Alex Soriano, Evan Sheldon, Perry Li, Jeffery Crook
-
Patent number: 10587038Abstract: Disclosed herein is an implantable electronic device having a housing containing an electrical circuit. The implantable electronic device further includes an antenna assembly coupled to the electrical circuit. The antenna assembly has an antenna with a dielectric antenna body within which an antenna trace is disposed. Portions of the antenna trace are disposed in offset transverse layers in a non-overlapping arrangement, thereby reducing capacitive coupling between the layers of the antenna trace. In certain implementations, the antenna assembly has one or more capacitive features that selectively overlap portions of the antenna trace and facilitate tuning of the antenna.Type: GrantFiled: June 26, 2017Date of Patent: March 10, 2020Assignee: Pacesetter, Inc.Inventors: Armando M. Cappa, Jorge N. Amely-Velez, Alan B. Vogel, Wisit Lim, John R. Gonzalez, Alexander Robertson, Alex Soriano, Evan Sheldon, Perry Li, Jeffery Crook
-
Publication number: 20190133457Abstract: Computer implemented methods, systems and devices are provided to monitor for potential heart failure (HF). Cardiac activity (CA) data is obtained and filtered to obtain respiration data indicative of a respiration pattern. The respiration data is analyzed to determine one or more respiration characteristics of interest (COI) that are recorded along with collection time information to form an HF monitoring log. Additionally or alternatively, the CA data is analyzed to detect an event of interest. The cardiac activity data is filtered to obtain respiration data indicative of a respiration pattern, and the respiration data is analyzed for respiration induced under detection of the event of interest from the CA data.Type: ApplicationFiled: November 3, 2017Publication date: May 9, 2019Inventors: Stephanie C. Sun, Xiaoyi Min, Alan B. Vogel, Fujian Qu, Stuart Rosenberg
-
Publication number: 20180131085Abstract: Disclosed herein is an implantable electronic device having a housing containing an electrical circuit. The implantable electronic device further includes an antenna assembly coupled to the electrical circuit. The antenna assembly has an antenna with a dielectric antenna body within which an antenna trace is disposed. Portions of the antenna trace are disposed in offset transverse layers in a non-overlapping arrangement, thereby reducing capacitive coupling between the layers of the antenna trace. In certain implementations, the antenna assembly has one or more capacitive features that selectively overlap portions of the antenna trace and facilitate tuning of the antenna.Type: ApplicationFiled: June 26, 2017Publication date: May 10, 2018Inventors: Armando M. Cappa, Jorge N. Amely-Velez, Alan B. Vogel, Wisit Lim, John R. Gonzalez, Alexander Robertson, Alex Soriano, Evan Sheldon, Perry Li, Jeffery Cook
-
Patent number: 8388670Abstract: Techniques are provided for equipping sensing/pacing leads with physiological sensors without requiring additional conductors within the leads. In a bipolar lead example for use with a pacemaker, a sensor is connected between tip and ring conductors of the lead. The sensor is configured to be activated only in response to enhanced pacing pulse (EPPs) having magnitudes or durations greater than typical pacing pulses or in response to impedance detection pulses (IMPs). In a unipolar example, the sensor is connected to the tip conductor and includes an output terminal on the external housing of the lead for providing a return current path to the pacemaker. The sensor of the unipolar lead is likewise configured to respond only to EPPs or IMPs. In other examples, the sensors are configured to be fitted to the external housing of the lead and to derive power from the lead via electromagnetic induction. Still other examples include actuators rather than sensors.Type: GrantFiled: January 16, 2007Date of Patent: March 5, 2013Assignee: Pacesetter, Inc.Inventors: Yongning Zou, James B. Hamilton, Alan B. Vogel, Chris Sorensen, Ryan Albu
-
Patent number: 8269636Abstract: An implantable medical device, such as a pacemaker or implantable cardioverter defibrillator (ICD), is configured to automatically detect ingestion of medications to verify that prescribed medications are taken in a timely manner and at the correct dosage. Briefly, individual pills are provided with miniature radio frequency identification (RFID) devices capable of transmitting RFID tag signals, which identify the medication contained within the pill and its dosage. The implanted device is equipped with an RFID transceiver for receiving tag signals from a pill as it is being ingested. The implanted system decodes the tag to identify the medication and its dosage, then accesses an onboard database to verify that the medication being ingested was in fact prescribed to the patient and to verify that the correct dosage was taken. Warning signals are generated if the wrong medication or the wrong dosage was taken. Therapy may also be automatically adjusted.Type: GrantFiled: January 24, 2011Date of Patent: September 18, 2012Assignee: Pacesetter, Inc.Inventors: Mark W. Kroll, Alan B. Vogel
-
Patent number: 8269635Abstract: An implantable medical device, such as a pacemaker or implantable cardioverter defibrillator (ICD), is configured to automatically detect ingestion of medications to verify that prescribed medications are taken in a timely manner and at the correct dosage. Briefly, individual pills are provided with miniature radio frequency identification (RFID) devices capable of transmitting RFID tag signals, which identify the medication contained within the pill and its dosage. The implanted device is equipped with an RFID transceiver for receiving tag signals from a pill as it is being ingested. The implanted system decodes the tag to identify the medication and its dosage, then accesses an onboard database to verify that the medication being ingested was in fact prescribed to the patient and to verify that the correct dosage was taken. Warning signals are generated if the wrong medication or the wrong dosage was taken. Therapy may also be automatically adjusted.Type: GrantFiled: February 12, 2010Date of Patent: September 18, 2012Assignee: Pacesetter, Inc.Inventors: Mark W. Kroll, Alan B. Vogel
-
Publication number: 20110124983Abstract: An implantable medical device, such as a pacemaker or implantable cardioverter defibrillator (ICD), is configured to automatically detect ingestion of medications to verify that prescribed medications are taken in a timely manner and at the correct dosage. Briefly, individual pills are provided with miniature radio frequency identification (RFID) devices capable of transmitting RFID tag signals, which identify the medication contained within the pill and its dosage. The implanted device is equipped with an RFID transceiver for receiving tag signals from a pill as it is being ingested. The implanted system decodes the tag to identify the medication and its dosage, then accesses an onboard database to verify that the medication being ingested was in fact prescribed to the patient and to verify that the correct dosage was taken. Warning signals are generated if the wrong medication or the wrong dosage was taken. Therapy may also be automatically adjusted.Type: ApplicationFiled: January 24, 2011Publication date: May 26, 2011Applicant: PACESETTER, INC.Inventors: Mark W. Kroll, Alan B. Vogel
-
Patent number: 7876228Abstract: An implantable medical device, such as a pacemaker or implantable cardioverter defibrillator (ICD), is configured to automatically detect ingestion of medications to verify that prescribed medications are taken in a timely manner and at the correct dosage. Briefly, individual pills are provided with miniature radio frequency identification (RFID) devices capable of transmitting RFID tag signals, which identify the medication contained within the pill and its dosage. The implanted device is equipped with an RFID transceiver for receiving tag signals from a pill as it is being ingested. The implanted system decodes the tag to identify the medication and its dosage, then accesses an onboard database to verify that the medication being ingested was in fact prescribed to the patient and to verify that the correct dosage was taken. Warning signals are generated if the wrong medication or the wrong dosage was taken. Therapy may also be automatically adjusted.Type: GrantFiled: July 16, 2008Date of Patent: January 25, 2011Assignee: Pacesetter, Inc.Inventors: Mark W. Kroll, Alan B. Vogel
-
Patent number: 7753855Abstract: An implantable cardiac stimulation device determines sudden cardiac death susceptibility of a heart. The device comprises a first measuring circuit that measures intrinsic rest rate of the heart, a second measuring circuit that measures heart rate response of the heart and a third measuring circuit that measures heart rate recovery of the heart. The device further comprises a comparator that compares the measured intrinsic rest rate, the measured heart rate response, and the measured heart rate recovery to respective first, second, and third standards and a response circuit that provides a predetermined response when the comparisons of the measured intrinsic rest rate, the measured heart rate response, and the measured heart rate recovery to the respective standards indicate a susceptibility of sudden cardiac death.Type: GrantFiled: December 29, 2006Date of Patent: July 13, 2010Assignee: Pacesetter, Inc.Inventors: Alan B. Vogel, Chris Sorensen
-
Publication number: 20100139672Abstract: An implantable medical device, such as a pacemaker or implantable cardioverter defibrillator (ICD), is configured to automatically detect ingestion of medications to verify that prescribed medications are taken in a timely manner and at the correct dosage. Briefly, individual pills are provided with miniature radio frequency identification (RFID) devices capable of transmitting RFID tag signals, which identify the medication contained within the pill and its dosage. The implanted device is equipped with an RFID transceiver for receiving tag signals from a pill as it is being ingested. The implanted system decodes the tag to identify the medication and its dosage, then accesses an onboard database to verify that the medication being ingested was in fact prescribed to the patient and to verify that the correct dosage was taken. Warning signals are generated if the wrong medication or the wrong dosage was taken. Therapy may also be automatically adjusted.Type: ApplicationFiled: February 12, 2010Publication date: June 10, 2010Applicant: PACESETTER, INC.Inventors: Mark W. Kroll, Alan B. Vogel
-
Publication number: 20080288027Abstract: An implantable medical device, such as a pacemaker or implantable cardioverter defibrillator (ICD), is configured to automatically detect ingestion of medications to verify that prescribed medications are taken in a timely manner and at the correct dosage. Briefly, individual pills are provided with miniature radio frequency identification (RFID) devices capable of transmitting RFID tag signals, which identify the medication contained within the pill and its dosage. The implanted device is equipped with an RFID transceiver for receiving tag signals from a pill as it is being ingested. The implanted system decodes the tag to identify the medication and its dosage, then accesses an onboard database to verify that the medication being ingested was in fact prescribed to the patient and to verify that the correct dosage was taken. Warning signals are generated if the wrong medication or the wrong dosage was taken. Therapy may also be automatically adjusted.Type: ApplicationFiled: July 16, 2008Publication date: November 20, 2008Applicant: PACESETTER, INC.Inventors: Mark W. Kroll, Alan B. Vogel
-
Patent number: 7414534Abstract: An implantable medical device, such as a pacemaker or implantable cardioverter defibrillator (ICD), is configured to automatically detect ingestion of medications to verify that prescribed medications are taken in a timely manner and at the correct dosage. Briefly, individual pills are provided with miniature radio frequency identification (RFID) devices capable of transmitting RFID tag signals, which identify the medication contained within the pill and its dosage. The implanted device is equipped with an RFID transceiver for receiving tag signals from a pill as it is being ingested. The implanted system decodes the tag to identify the medication and its dosage, then accesses an onboard database to verify that the medication being ingested was in fact prescribed to the patient and to verify that the correct dosage was taken. Warning signals are generated if the wrong medication or the wrong dosage was taken. Therapy may also be automatically adjusted.Type: GrantFiled: November 9, 2004Date of Patent: August 19, 2008Assignee: Pacesetter, Inc.Inventors: Mark W. Kroll, Alan B. Vogel
-
Patent number: 6937900Abstract: An implantable cardiac stimulation device which determines stimulation based upon the patient's body position and activity level while eliminating special implantation or calibration procedures. To eliminate such special implantation and calibration procedures, the stimulation device correlates the patient's body position using a multi-axis DC accelerometer or other sensor during times of high activity and determines a patient's standing position value. During other times, the stimulation device compares the signals from the accelerometer to the standing position value to determine the patient's current body position. Based upon the current body position and the activity level, the stimulation device determines the necessary stimulation to deliver to the patient.Type: GrantFiled: July 24, 2002Date of Patent: August 30, 2005Assignee: Pacesetter, Inc.Inventors: Anne M. Pianca, Gene A. Bornzin, Euljoon Park, Alan B. Vogel, Joseph J. Florio, Lee Jay Mandell, Junyu Mai