Patents by Inventor Alan Baldwin

Alan Baldwin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240351694
    Abstract: An electrical propulsion system for a vertical take-off and landing (VTOL) aircraft comprises an electrical motor assembly and an inverter assembly. The inverter assembly comprises a housing, a capacitor assembly, at least one printed circuit board assembly (PCBA), and a plurality of positioning pins. The capacitor assembly comprises a center hole, at least one capacitor, a capacitor housing having at least one busbar, and a plurality of through holes in the capacitor housing. The capacitor assembly and the at least one PCBA are positioned inside the housing. The plurality of positioning pins pass through the through the plurality of through holes of the capacitor housing and the at least one PCBA and are connected to the housing.
    Type: Application
    Filed: July 1, 2024
    Publication date: October 24, 2024
    Applicant: Archer Aviation, Inc.
    Inventors: Scott GRAVES, Alan BALDWIN, Stephen Michael SPITERI, Wei WU, Alan D. TEPE
  • Patent number: 12122527
    Abstract: An electrical propulsion system for a vertical take-off and landing (VTOL) aircraft comprises an electrical motor assembly and an inverter assembly. The inverter assembly comprises a housing, a capacitor assembly, at least one printed circuit board assembly (PCBA), and a plurality of positioning pins. The capacitor assembly comprises a center hole, at least one capacitor, a capacitor housing having at least one busbar, and a plurality of through holes in the capacitor housing. The capacitor assembly and the at least one PCBA are positioned inside the housing. The plurality of positioning pins pass through the through the plurality of through holes of the capacitor housing and the at least one PCBA and are connected to the housing.
    Type: Grant
    Filed: March 29, 2024
    Date of Patent: October 22, 2024
    Assignee: ARCHER AVIATION INC.
    Inventors: Scott Graves, Alan Baldwin, Stephen Michael Spiteri, Wei Wu, Alan D. Tepe
  • Patent number: 12059452
    Abstract: The present invention relates to fusion proteins comprising an insulin receptor agonist fused to a human IgG Fc region through the use of a peptide linker, and the use of such fusion proteins in the treatment of diabetes. The fusion protein of the present invention has an extended time action profile and is useful for providing basal glucose control for an extended period of time.
    Type: Grant
    Filed: January 18, 2022
    Date of Patent: August 13, 2024
    Assignee: ELI LILLY AND COMPANY
    Inventors: David Bruce Baldwin, John Michael Beals, Jonathan Wesley Day, Craig Duane Dickinson, Andrew Ihor Korytko, Gregory Alan Lazar
  • Publication number: 20240253795
    Abstract: An electrical propulsion system for a vertical take-off and landing (VTOL) aircraft comprises an electrical motor assembly and an inverter assembly. The inverter assembly comprises a housing, a capacitor assembly, at least one printed circuit board assembly (PCBA), and a plurality of positioning pins. The capacitor assembly comprises a center hole, at least one capacitor, a capacitor housing having at least one busbar, and a plurality of through holes in the capacitor housing. The capacitor assembly and the at least one PCBA are positioned inside the housing. The plurality of positioning pins pass through the through the plurality of through holes of the capacitor housing and the at least one PCBA and are connected to the housing.
    Type: Application
    Filed: March 29, 2024
    Publication date: August 1, 2024
    Applicant: Archer Aviation, Inc.
    Inventors: Scott GRAVES, Alan BALDWIN, Stephen Michael SPITERI, Wei Wu, Alan D. TEPE
  • Publication number: 20240253794
    Abstract: An electrical propulsion system for a vertical take-off and landing (VTOL) aircraft comprises an electrical motor assembly and an inverter assembly. The inverter assembly comprises a housing, a capacitor assembly, at least one printed circuit board assembly (PCBA), and a plurality of positioning pins. The capacitor assembly comprises a center hole, at least one capacitor, a capacitor housing having at least one busbar, and a plurality of through holes in the capacitor housing. The capacitor assembly and the at least one PCBA are positioned inside the housing. The plurality of positioning pins pass through the through the plurality of through holes of the capacitor housing and the at least one PCBA and are connected to the housing.
    Type: Application
    Filed: March 29, 2024
    Publication date: August 1, 2024
    Applicant: Archer Aviation, Inc.
    Inventors: Alan D. TEPE, Alan BALDWIN
  • Publication number: 20240188860
    Abstract: A laparoscopic medical device includes an oximeter sensor at its tip, which allows the making of oxygen saturation measurements laparoscopically. The device can be a unitary design, wherein a laparoscopic element includes electronics for the oximeter sensor at a distal end (e.g., opposite the tip). The device can be a multiple piece design (e.g., two-piece design), where some electronics is in a separate housing from the laparoscopic element, and the pieces (or portions) are removably connected together. The laparoscopic element can be removed and disposed of; so, the electronics can be reused multiple times with replacement laparoscopic elements. The electronics can include a processing unit for control, computation, or display, or any combination of these. However, in an implementation, the electronics can connect wirelessly to other electronics (e.g., another processing unit) for further control, computation, or display, or any combination of these.
    Type: Application
    Filed: February 20, 2024
    Publication date: June 13, 2024
    Inventors: Kate LeeAnn Bechtel, Todd Louis Harris, Edward Gerald Soloman, Winston Sun, Alan Baldwin, Scott E. Coleridge, Mark Lonsinger
  • Publication number: 20240188861
    Abstract: A laparoscopic medical device includes an oximeter sensor at its tip, which allows the making of oxygen saturation measurements laparoscopically. The device can be a unitary design, wherein a laparoscopic element includes electronics for the oximeter sensor at a distal end (e.g., opposite the tip). The device can be a multiple piece design (e.g., two-piece design), where some electronics is in a separate housing from the laparoscopic element, and the pieces (or portions) are removably connected together. The laparoscopic element can be removed and disposed of; so, the electronics can be reused multiple times with replacement laparoscopic elements. The electronics can include a processing unit for control, computation, or display, or any combination of these. However, in an implementation, the electronics can connect wirelessly to other electronics (e.g., another processing unit) for further control, computation, or display, or any combination of these.
    Type: Application
    Filed: February 20, 2024
    Publication date: June 13, 2024
    Inventors: Kate LeeAnn Bechtel, Todd Louis Harris, Edward Gerald Solomon, Winston Sun, Alan Baldwin, Scott E. Coleridge, Mark Lonsinger
  • Patent number: 11975854
    Abstract: An electrical propulsion system for a vertical take-off and landing (VTOL) aircraft comprises an electrical motor assembly and an inverter assembly. The inverter assembly comprises a housing, a capacitor assembly, at least one printed circuit board assembly (PCBA), and a plurality of positioning pins. The capacitor assembly comprises a center hole, at least one capacitor, a capacitor housing having at least one busbar, and a plurality of through holes in the capacitor housing. The capacitor assembly and the at least one PCBA are positioned inside the housing. The plurality of positioning pins pass through the through the plurality of through holes of the capacitor housing and the at least one PCBA and are connected to the housing.
    Type: Grant
    Filed: April 25, 2023
    Date of Patent: May 7, 2024
    Assignee: ARCHER AVIATION, INC.
    Inventors: Alan D. Tepe, Stephen Michael Spiteri, Scott Graves, Alan Baldwin, Wei Wu, Robert Wayne Moore, Michael Zwiers, Diederik Marius
  • Publication number: 20240116641
    Abstract: An electrical propulsion system for a vertical take-off and landing (VTOL) aircraft comprises an electrical motor assembly and an inverter assembly. The inverter assembly comprises a housing, a capacitor assembly, at least one printed circuit board assembly (PCBA), and a plurality of positioning pins. The capacitor assembly comprises a center hole, at least one capacitor, a capacitor housing having at least one busbar, and a plurality of through holes in the capacitor housing. The capacitor assembly and the at least one PCBA are positioned inside the housing. The plurality of positioning pins pass through the through the plurality of through holes of the capacitor housing and the at least one PCBA and are connected to the housing.
    Type: Application
    Filed: April 25, 2023
    Publication date: April 11, 2024
    Applicant: Archer Aviation, Inc.
    Inventors: Alan D. TEPE, Stephen Michael SPITERI, Scott GRAVES, Alan BALDWIN, Wei WU, Robert Wayne MOORE, Michael ZWIERS, Diederik MARIUS
  • Patent number: 11903703
    Abstract: A laparoscopic medical device includes an oximeter sensor at its tip, which allows the making of oxygen saturation measurements laparoscopically. The device can be a unitary design, wherein a laparoscopic element includes electronics for the oximeter sensor at a distal end (e.g., opposite the tip). The device can be a multiple piece design (e.g., two-piece design), where some electronics is in a separate housing from the laparoscopic element, and the pieces (or portions) are removably connected together. The laparoscopic element can be removed and disposed of; so, the electronics can be reused multiple times with replacement laparoscopic elements. The electronics can include a processing unit for control, computation, or display, or any combination of these. However, in an implementation, the electronics can connect wirelessly to other electronics (e.g., another processing unit) for further control, computation, or display, or any combination of these.
    Type: Grant
    Filed: August 25, 2020
    Date of Patent: February 20, 2024
    Assignee: ViOptix, Inc.
    Inventors: Kate Leeann Bechtel, Todd Louis Harris, Edward Gerald Solomon, Winston Sun, Alan Baldwin, Scott Coleridge, Mark Lonsinger
  • Patent number: 11903704
    Abstract: A laparoscopic medical device includes an oximeter sensor at its tip, which allows the making of oxygen saturation measurements laparoscopically. The device can be a unitary design, wherein a laparoscopic element includes electronics for the oximeter sensor at a distal end (e.g., opposite the tip). The device can be a multiple piece design (e.g., two-piece design), where some electronics is in a separate housing from the laparoscopic element, and the pieces (or portions) are removably connected together. The laparoscopic element can be removed and disposed of; so, the electronics can be reused multiple times with replacement laparoscopic elements. The electronics can include a processing unit for control, computation, or display, or any combination of these. However, in an implementation, the electronics can connect wirelessly to other electronics (e.g., another processing unit) for further control, computation, or display, or any combination of these.
    Type: Grant
    Filed: March 2, 2021
    Date of Patent: February 20, 2024
    Assignee: ViOptix, Inc.
    Inventors: Kate Leeann Bechtel, Todd Louis Harris, Edward Gerald Soloman, Winston Sun, Alan Baldwin, Scott Coleridge, Mark Lonsinger
  • Publication number: 20230417446
    Abstract: A zoned heating, ventilation, and air conditioning system is controlled via a home automation hub. The home automation hub communicates commands to an air handler via either a zoning interface module or a specially adapted thermostat. The zoning interface module or specially adapted thermostat are programmed to send commands to the air handler based on a default strategy whenever communication with the hub is lost, thereby mitigating the impact of a hub failure of communications failure. The zoning interface module additionally forwards commands from the hub to zone dampers. A user may conveniently indicate the type of equipment by inserting a removable equipment identifier from a set of provided removable equipment identifiers.
    Type: Application
    Filed: September 8, 2023
    Publication date: December 28, 2023
    Inventor: Reid Alan Baldwin
  • Patent number: 11796976
    Abstract: A zoned heating, ventilation, and air conditioning system is controlled via a home automation hub. The home automation hub communicates commands to an air handler via either a zoning interface module or a specially adapted thermostat. The zoning interface module or specially adapted thermostat are programmed to send commands to the air handler based on a default strategy whenever communication with the hub is lost, thereby mitigating the impact of a hub failure of communications failure. The zoning interface module additionally forwards commands from the hub to zone dampers. A user may conveniently indicate the type of equipment by inserting a removable terminal label from a set of provided removable terminal labels.
    Type: Grant
    Filed: November 18, 2021
    Date of Patent: October 24, 2023
    Inventor: Reid Alan Baldwin
  • Publication number: 20230152767
    Abstract: A zoned heating, ventilation, and air conditioning system is controlled via a home automation hub. The home automation hub communicates commands to an air handler via either a zoning interface module or a specially adapted thermostat. The zoning interface module or specially adapted thermostat are programmed to send commands to the air handler based on a default strategy whenever communication with the hub is lost, thereby mitigating the impact of a hub failure of communications failure. The zoning interface module additionally forwards commands from the hub to zone dampers. A user may conveniently indicate the type of equipment by inserting a removable terminal label from a set of provided removable terminal labels.
    Type: Application
    Filed: November 18, 2021
    Publication date: May 18, 2023
    Inventor: Reid Alan Baldwin
  • Publication number: 20230040693
    Abstract: The present embodiments relate generally to applicators of on-skin sensor assemblies for measuring an analyte in a host, as well as their method of use and manufacture. In some aspects, an applicator for applying an on-skin sensor assembly to a skin of a host is provided. The applicator includes an applicator housing, a needle carrier assembly comprising an insertion element configured to insert a sensor of the on-skin sensor assembly into the skin of the host, a holder releasably coupled to the needle carrier assembly and configured to guide the on-skin sensor assembly while coupled to the needle carrier assembly, and a drive assembly configured to drive the insertion element from a proximal starting position to a distal insertion position, and from the distal insertion position to a proximal retraction position.
    Type: Application
    Filed: October 5, 2022
    Publication date: February 9, 2023
    Inventors: John Michael Gray, Jennifer Blackwell, Paul V. Neale, Justen Deering England, Andrew Joncich, Cameron Brock, Peter C. Simpson, Thomas Metzmaker, Neel Narayan Shah, Mark Douglas Kempkey, Patrick John Castagna, Warren Terry, Jason Halac, Christian Michael Andre George, Daniel E. Apacible, John Charles Barry, Maria Noel Brown Wells, Kenneth Pirondini, Andrew Michael Reinhardt, Jason C. Wong, Remy E. Gagnon, David DeRenzy, Randall Scott Koplin, Alan Baldwin, Young Woo Lee, David A. Keller, Louise Emma van den Heuvel, Carol Wood Sutherland
  • Publication number: 20230023008
    Abstract: The present embodiments relate generally to applicators of on-skin sensor assemblies for measuring an analyte in a host, as well as their method of use and manufacture. In some aspects, an applicator for applying an on-skin sensor assembly to a skin of a host is provided. The applicator includes an applicator housing, a needle carrier assembly comprising an insertion element configured to insert a sensor of the on-skin sensor assembly into the skin of the host, a holder releasably coupled to the needle carrier assembly and configured to guide the on-skin sensor assembly while coupled to the needle carrier assembly, and a drive assembly configured to drive the insertion element from a proximal starting position to a distal insertion position, and from the distal insertion position to a proximal retraction position.
    Type: Application
    Filed: October 5, 2022
    Publication date: January 26, 2023
    Inventors: John Michael Gray, Jennifer Blackwell, Paul V. Neale, Justen Deering England, Andrew Joncich, Cameron Brock, Peter C. Simpson, Thomas Metzmaker, Neel Narayan Shah, Mark Douglas Kempkey, Patrick John Castagna, Warren Terry, Jason Halac, Christian Michael Andre George, Daniel E. Apacible, John Charles Barry, Maria Noel Brown Wells, Kenneth Pirondini, Andrew Michael Reinhardt, Jason C. Wong, Remy E. Gagnon, David DeRenzy, Randall Scott Koplin, Alan Baldwin, Young Woo Lee, David A. Keller, Louise Emma van den Heuvel, Carol Wood Sutherland
  • Publication number: 20230000399
    Abstract: A laparoscopic medical device includes an oximeter sensor at its tip, which allows the making of oxygen saturation measurements laparoscopically. The device can be a unitary design, wherein a laparoscopic element includes electronics for the oximeter sensor at a distal end (e.g., opposite the tip). The device can be a multiple piece design (e.g., two-piece design), where some electronics is in a separate housing from the laparoscopic element, and the pieces (or portions) are removably connected together. The laparoscopic element can be removed and disposed of; so, the electronics can be reused multiple times with replacement laparoscopic elements. The electronics can include a processing unit for control, computation, or display, or any combination of these. However, in an implementation, the electronics can connect wirelessly to other electronics (e.g., another processing unit) for further control, computation, or display, or any combination of these.
    Type: Application
    Filed: September 13, 2022
    Publication date: January 5, 2023
    Inventors: Kate LeeAnn Bechtel, Todd Louis Harris, Edward Gerald Solomon, Winston Sun, Alan Baldwin, Scott Coleridge, Mark Lonsinger
  • Patent number: 11510625
    Abstract: The present embodiments relate generally to applicators of on-skin sensor assemblies for measuring an analyte in a host, as well as their method of use and manufacture. In some aspects, an applicator for applying an on-skin sensor assembly to a skin of a host is provided. The applicator includes an applicator housing, a needle carrier assembly comprising an insertion element configured to insert a sensor of the on-skin sensor assembly into the skin of the host, a holder releasably coupled to the needle carrier assembly and configured to guide the on-skin sensor assembly while coupled to the needle carrier assembly, and a drive assembly configured to drive the insertion element from a proximal starting position to a distal insertion position, and from the distal insertion position to a proximal retraction position.
    Type: Grant
    Filed: February 3, 2022
    Date of Patent: November 29, 2022
    Assignee: DexCom, Inc.
    Inventors: John Michael Gray, Jennifer Blackwell, Paul V. Neale, Justen Deering England, Andrew Joncich, Cameron Brock, Peter C. Simpson, Thomas Metzmaker, Neel Narayan Shah, Mark Douglas Kempkey, Patrick John Castagna, Warren Terry, Jason Halac, Christian Michael Andre George, Daniel E. Apacible, John Charles Barry, Maria Noel Brown Wells, Kenneth Pirondini, Andrew Michael Reinhardt, Jason C. Wong, Remy E. Gagnon, David DeRenzy, Randall Scott Koplin, Alan Baldwin, Young Woo Lee, David A. Keller, Louise Emma van den Heuvel, Carol Wood Sutherland
  • Patent number: 11504063
    Abstract: The present embodiments relate generally to applicators of on-skin sensor assemblies for measuring an analyte in a host, as well as their method of use and manufacture. In some aspects, an applicator for applying an on-skin sensor assembly to a skin of a host is provided. The applicator includes an applicator housing, a needle carrier assembly comprising an insertion element configured to insert a sensor of the on-skin sensor assembly into the skin of the host, a holder releasably coupled to the needle carrier assembly and configured to guide the on-skin sensor assembly while coupled to the needle carrier assembly, and a drive assembly configured to drive the insertion element from a proximal starting position to a distal insertion position, and from the distal insertion position to a proximal retraction position.
    Type: Grant
    Filed: February 3, 2022
    Date of Patent: November 22, 2022
    Assignee: DexCom, Inc.
    Inventors: John Michael Gray, Jennifer Blackwell, Paul V. Neale, Justen Deering England, Andrew Joncich, Cameron Brock, Peter C. Simpson, Thomas Metzmaker, Neel Narayan Shah, Mark Douglas Kempkey, Patrick John Castagna, Warren Terry, Jason Halac, Christian Michael Andre George, Daniel E. Apacible, John Charles Barry, Maria Noel Brown Wells, Kenneth Pirondini, Andrew Michael Reinhardt, Jason C. Wong, Remy E. Gagnon, David DeRenzy, Randall Scott Koplin, Alan Baldwin, Young Woo Lee, David A. Keller, Louise Emma van den Heuvel, Carol Wood Sutherland
  • Patent number: D987558
    Type: Grant
    Filed: April 19, 2022
    Date of Patent: May 30, 2023
    Assignee: ViOptix, Inc.
    Inventors: Alan Baldwin, Mark Gil Martin, Joseph G. Santiago, William Welch