Patents by Inventor Alan C. Lund

Alan C. Lund has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11634831
    Abstract: Coated articles and methods for applying coatings are described. In some cases, the coating can exhibit desirable properties and characteristics such as durability, corrosion resistance, and high conductivity. The articles may be coated, for example, using an electrodeposition process.
    Type: Grant
    Filed: December 16, 2019
    Date of Patent: April 25, 2023
    Assignee: Xtalic Corporation
    Inventors: John Cahalen, Alan C. Lund, Christopher A. Schuh
  • Publication number: 20210008619
    Abstract: Embodiments described herein relate generally to systems and methods for using nanocrystalline metal alloy particles or powders to create nanocrystalline and/or microcrystalline metal alloy articles using additive manufacturing. In some embodiments, a manufacturing method for creating articles includes disposing a plurality of nanocrystalline particles and selectively binding the particles together to form the article. In some embodiments, the nanocrystalline particles can be sintered to bind the particles together. In some embodiments, the plurality of nanocrystalline particles can be disposed on a substrate and sintered to form the article. The substrate can be a base or a prior layer of bound particles. In some embodiments, the nanocrystalline particles can be selectively bound together (e.g., sintered) at substantially the same time as they are disposed on the substrate.
    Type: Application
    Filed: February 12, 2020
    Publication date: January 14, 2021
    Applicant: Veloxint Corporation
    Inventors: Alan C. LUND, Christopher A. SCHUH
  • Publication number: 20200232111
    Abstract: Coated articles and methods for applying coatings are described. In some cases, the coating can exhibit desirable properties and characteristics such as durability, corrosion resistance, and high conductivity. The articles may be coated, for example, using an electrodeposition process.
    Type: Application
    Filed: December 16, 2019
    Publication date: July 23, 2020
    Applicant: Xtalic Corporation
    Inventors: John Cahalen, Alan C. Lund, Christopher A. Schuh
  • Publication number: 20200115815
    Abstract: Coated articles, electrodeposition baths, and related systems are described. The article may include a base material and a coating comprising silver formed thereon. In some embodiments, the coating comprises a silver-based alloy, such as a silver-tungsten alloy. The coating can exhibit desirable properties and characteristics such as durability (e.g., wear), hardness, corrosion resistance, and high conductivity, which may be beneficial, for example, in electrical and/or electronic applications. In some cases, the coating may be applied using an electrodeposition process.
    Type: Application
    Filed: August 26, 2019
    Publication date: April 16, 2020
    Applicant: Xtalic Corporation
    Inventors: Nazila Dadvand, John D'Urso, Jonathan C. Trenkle, Alan C. Lund, John Cahalen
  • Patent number: 10596628
    Abstract: Embodiments described herein relate generally to systems and methods for using nanocrystalline metal alloy particles or powders to create nanocrystalline and/or microcrystalline metal alloy articles using additive manufacturing. In some embodiments, a manufacturing method for creating articles includes disposing a plurality of nanocrystalline particles and selectively binding the particles together to form the article. In some embodiments, the nanocrystalline particles can be sintered to bind the particles together. In some embodiments, the plurality of nanocrystalline particles can be disposed on a substrate and sintered to form the article. The substrate can be a base or a prior layer of bound particles. In some embodiments, the nanocrystalline particles can be selectively bound together (e.g., sintered) at substantially the same time as they are disposed on the substrate.
    Type: Grant
    Filed: March 3, 2017
    Date of Patent: March 24, 2020
    Assignee: Veloxint Corporation
    Inventors: Alan C. Lund, Christopher A. Schuh
  • Patent number: 10590514
    Abstract: Techniques for forming an enclosure comprised of aluminum zirconium alloy layer are disclosed. In some embodiments, aluminum ions and zirconium ions can be dissolved in a non-aqueous ionic liquid in an electrolytic plating bath. A reverse pulsed electric current can facilitate in co-depositing the aluminum ions and the zirconium ions onto a metal substrate. The resulting aluminum zirconium alloy layer can include nanocrystalline grain structures, which can impart the alloy layer with increased hardness and increased resistance to scratching, denting, and abrasion. In some embodiments, the aluminum zirconium alloy layer can be anodized to form an aluminum oxide layer. Subsequent to the anodization operation, the oxidized layer is able to retain its substantially neutral color.
    Type: Grant
    Filed: April 7, 2017
    Date of Patent: March 17, 2020
    Assignee: XTALIC CORPORATION
    Inventors: Evgeniya Freydina, Joshua Garth Abbott, Alan C. Lund, Robert Daniel Hilty, Shiyun Ruan, Jason Reese, Lisa J. Chan, James A. Wright, James A. Curran
  • Patent number: 10590558
    Abstract: Techniques for forming an enclosure comprised of an aluminum alloy are disclosed. In some embodiments, aluminum ions and metal element ions can be dissolved in a non-aqueous ionic liquid in an electrolytic plating bath. A reverse pulsed electric current can facilitate in co-depositing the aluminum ions and the metal element ions onto a metal substrate. The resulting aluminum alloy layer can include nanocrystalline structures, which can impart the alloy layer with increased hardness and increased resistance to scratching, corrosion, and abrasion. In some embodiments, the metal element ion is chromium and the aluminum alloy layer includes a chromium oxide passivation layer formed via a passivation process. Subsequent to the passivation process, the formation of the chromium oxide layer does not impart a change in color to the aluminum alloy layer. In some embodiments, hafnium ions are co-deposited with aluminum ions to form an aluminum hafnium alloy.
    Type: Grant
    Filed: April 7, 2017
    Date of Patent: March 17, 2020
    Assignee: XTALIC CORPORATION
    Inventors: Evgeniya Freydina, Joshua Garth Abbott, Alan C. Lund, Robert Daniel Hilty, Shiyun Ruan, Jason Reese, Lisa J. Chan, James A. Wright, James A. Curran
  • Publication number: 20190186033
    Abstract: An article comprising an electrodeposited aluminum alloy is described herein. The electrodeposited aluminum alloy comprises an average grain size less than approximately 1 micrometer. The electrodeposited aluminum alloy thickness is greater than approximately 40 micrometers. A ductility of the electrodeposited aluminum alloy is greater than approximately 2%.
    Type: Application
    Filed: December 11, 2018
    Publication date: June 20, 2019
    Applicant: Xtalic Corporation
    Inventors: Shiyun Ruan, Witold Paw, John Hunter Martin, Alan C. Lund
  • Patent number: 10190227
    Abstract: An article comprising an electrodeposited aluminum alloy is described herein. The electrodeposited aluminum alloy comprises an average grain size less than approximately 1 micrometer. The electrodeposited aluminum alloy thickness is greater than approximately 40 micrometers. A ductility of the electrodeposited aluminum alloy is greater than approximately 2%.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: January 29, 2019
    Assignee: Xtalic Corporation
    Inventors: Shiyun Ruan, Witold Paw, John Hunter Martin, Alan C. Lund
  • Publication number: 20180163315
    Abstract: Coated articles, electrodeposition baths, and related systems are described. The article may include a base material and a coating comprising silver formed thereon. In some embodiments, the coating comprises a silver-based alloy, such as a silver-tungsten alloy. The coating can exhibit desirable properties and characteristics such as durability (e.g., wear), hardness, corrosion resistance, and high conductivity, which may be beneficial, for example, in electrical and/or electronic applications. In some cases, the coating may be applied using an electrodeposition process.
    Type: Application
    Filed: September 21, 2017
    Publication date: June 14, 2018
    Applicant: Xtalic Corporation
    Inventors: Nazila Dadvand, John D'Urso, Jonathan C. Trenkle, Alan C. Lund, John Cahalen
  • Publication number: 20180163314
    Abstract: Coated articles and methods for applying coatings are described. In some cases, the coating can exhibit desirable properties and characteristics such as durability, corrosion resistance, and high conductivity. The articles may be coated, for example, using an electrodeposition process.
    Type: Application
    Filed: September 15, 2017
    Publication date: June 14, 2018
    Applicant: Xtalic Corporation
    Inventors: John Cahalen, Alan C. Lund, Christopher A. Schuh
  • Publication number: 20180087173
    Abstract: Techniques for forming an enclosure comprised of an aluminum alloy are disclosed. In some embodiments, aluminum ions and metal element ions can be dissolved in a non-aqueous ionic liquid in an electrolytic plating bath. A reverse pulsed electric current can facilitate in co-depositing the aluminum ions and the metal element ions onto a metal substrate. The resulting aluminum alloy layer can include nanocrystalline structures, which can impart the alloy layer with increased hardness and increased resistance to scratching, corrosion, and abrasion. In some embodiments, the metal element ion is chromium and the aluminum alloy layer includes a chromium oxide passivation layer formed via a passivation process. Subsequent to the passivation process, the formation of the chromium oxide layer does not impart a change in color to the aluminum alloy layer. In some embodiments, hafnium ions are co-deposited with aluminum ions to form an aluminum hafnium alloy.
    Type: Application
    Filed: April 7, 2017
    Publication date: March 29, 2018
    Inventors: Evgeniya FREYDINA, Joshua Garth ABBOTT, Alan C. LUND, Robert Daniel HILTY, Shiyun RUAN, Jason REESE, Lisa J. CHAN, James A. WRIGHT, James A. CURRAN
  • Publication number: 20180056630
    Abstract: Coated articles and methods for applying coatings are described. The article may include a base material and a coating comprising silver formed thereon. In some embodiments, the coating comprises a silver-based alloy, such as a silver-tungsten alloy. The coating may, in some instances, include at least two layers. For example, the coating may include a first layer comprising a silver-based alloy and a second layer comprising a precious metal. The coating can exhibit desirable properties and characteristics such as durability (e.g., wear), hardness, corrosion resistance, and high conductivity, which may be beneficial, for example, in electrical and/or electronic applications. In some cases, the coating may be applied using an electrodeposition process.
    Type: Application
    Filed: June 29, 2017
    Publication date: March 1, 2018
    Applicant: Xtalic Corporation
    Inventors: Nazila Dadvand, Christopher A. Schuh, Alan C. Lund, Jonathan C. Trenkle, John Cahalen
  • Publication number: 20180002786
    Abstract: Techniques for forming an enclosure comprised of aluminum zirconium alloy layer are disclosed. In some embodiments, aluminum ions and zirconium ions can be dissolved in a non-aqueous ionic liquid in an electrolytic plating bath. A reverse pulsed electric current can facilitate in co-depositing the aluminum ions and the zirconium ions onto a metal substrate. The resulting aluminum zirconium alloy layer can include nanocrystalline grain structures, which can impart the alloy layer with increased hardness and increased resistance to scratching, denting, and abrasion. In some embodiments, the aluminum zirconium alloy layer can be anodized to form an aluminum oxide layer. Subsequent to the anodization operation, the oxidized layer is able to retain its substantially neutral color.
    Type: Application
    Filed: April 7, 2017
    Publication date: January 4, 2018
    Inventors: Evgeniya FREYDINA, Joshua Garth ABBOTT, Alan C. LUND, Robert Daniel HILTY, Shiyun RUAN, Jason REESE, Lisa J. CHAN, James A. WRIGHT, James A. CURRAN
  • Patent number: 9765438
    Abstract: Coated articles and methods for applying coatings are described. In some cases, the coating can exhibit desirable properties and characteristics such as durability, corrosion resistance, and high conductivity. The articles may be coated, for example, using an electrodeposition process.
    Type: Grant
    Filed: February 17, 2014
    Date of Patent: September 19, 2017
    Assignee: Xtalic Corporation
    Inventors: John Cahalen, Alan C. Lund, Christopher A. Schuh
  • Patent number: 9758888
    Abstract: Metal surface pretreatments using ionic liquids prior to electroplating are disclosed. The surface treatments include forming an activated metal substrate surface by removing any naturally formed metal oxide layers formed on the surfaces of the metal substrates. According to some embodiments, the surface treatments include exposing the metal substrate to a non-aqueous ionic liquid. In some embodiments, an electrical current is applied to the metal substrate to assist removal of the metal oxide layer. The electrical current can be a pulsed anodic current. After activating the surface, a metal layer can be deposited on the activated surface. In some embodiments, the metal layer is electrodeposited in the same ionic liquid used to form the activated surface. The resultant metal coating is resistant to scratching and peeling.
    Type: Grant
    Filed: May 6, 2014
    Date of Patent: September 12, 2017
    Assignee: Apple Inc.
    Inventors: Evgeniya Freydina, Shiyun Ruan, Christopher A. Schuh, Alan C. Lund
  • Publication number: 20170253008
    Abstract: Articles including a multi-layer coating and methods for applying coatings are described herein. The article may include a substrate on which the multi-layer coating is formed. In some embodiments, the coating includes multiple metallic layers.
    Type: Application
    Filed: February 16, 2017
    Publication date: September 7, 2017
    Applicant: Xtalic Corporation
    Inventors: John Cahalen, Kathy Bui, Peteris Griffiths, Alan C. Lund, Samuel R. Cross, Anne L. Testoni
  • Publication number: 20170253983
    Abstract: Articles including a nickel-free coating and methods for applying coatings are described herein.
    Type: Application
    Filed: February 16, 2017
    Publication date: September 7, 2017
    Applicant: Xtalic Corporation
    Inventors: John Cahalen, Kathy Bui, Zheng Zhou, Alan C. Lund
  • Publication number: 20170252807
    Abstract: Embodiments described herein relate generally to systems and methods for using nanocrystalline metal alloy particles or powders to create nanocrystalline and/or microcrystalline metal alloy articles using additive manufacturing. In some embodiments, a manufacturing method for creating articles includes disposing a plurality of nanocrystalline particles and selectively binding the particles together to form the article. In some embodiments, the nanocrystalline particles can be sintered to bind the particles together. In some embodiments, the plurality of nanocrystalline particles can be disposed on a substrate and sintered to form the article. The substrate can be a base or a prior layer of bound particles. In some embodiments, the nanocrystalline particles can be selectively bound together (e.g., sintered) at substantially the same time as they are disposed on the substrate.
    Type: Application
    Filed: March 3, 2017
    Publication date: September 7, 2017
    Inventors: Alan C. Lund, Christopher A. Schuh
  • Patent number: 9694562
    Abstract: Coated articles and methods for applying coatings are described. The article may include a base material and a coating comprising silver formed thereon. In some embodiments, the coating comprises a silver-based alloy, such as a silver-tungsten alloy. The coating may, in some instances, include at least two layers. For example, the coating may include a first layer comprising a silver-based alloy and a second layer comprising a precious metal. The coating can exhibit desirable properties and characteristics such as durability (e.g., wear), hardness, corrosion resistance, and high conductivity, which may be beneficial, for example, in electrical and/or electronic applications. In some cases, the coating may be applied using an electrodeposition process.
    Type: Grant
    Filed: March 12, 2010
    Date of Patent: July 4, 2017
    Assignee: Xtalic Corporation
    Inventors: Nazila Dadvand, Christopher A. Schuh, Alan C. Lund, Jonathan C. Trenkle, John Cahalen