Patents by Inventor Alan C. McAllister

Alan C. McAllister has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10321573
    Abstract: Embodiments of the present disclosure are directed towards techniques and configurations to provide solder contacts for electrical connection in socket assemblies. In one embodiment, a solder contact may be disposed on the bottom surface of a die package such that the solder contact is conductively coupled to electrical contacts of the die package. The solder contacts may be disposed to be coupled to pins of a socket assembly, to provide conductive coupling of the electrical contacts of the die package and the pins of the socket assembly. The solder may be selected to be sufficiently soft to provide for better electrical conduction. The pins may also be configured to penetrate the solder contact to provide for better electrical conduction. Other embodiments may be described and/or claimed.
    Type: Grant
    Filed: December 27, 2017
    Date of Patent: June 11, 2019
    Assignee: INTEL CORPORATION
    Inventors: Fay Hua, Hong Xie, Gregorio R. Murtagian, Amit Abraham, Alan C. McAllister, Ting Zhong
  • Publication number: 20180192519
    Abstract: Embodiments of the present disclosure are directed towards techniques and configurations to provide solder contacts for electrical connection in socket assemblies. In one embodiment, a solder contact may be disposed on the bottom surface of a die package such that the solder contact is conductively coupled to electrical contacts of the die package. The solder contacts may be disposed to be coupled to pins of a socket assembly, to provide conductive coupling of the electrical contacts of the die package and the pins of the socket assembly. The solder may be selected to be sufficiently soft to provide for better electrical conduction. The pins may also be configured to penetrate the solder contact to provide for better electrical conduction. Other embodiments may be described and/or claimed.
    Type: Application
    Filed: December 27, 2017
    Publication date: July 5, 2018
    Inventors: Fay HUA, Hong XIE, Gregorio R. MURTAGIAN, Amit ABRAHAM, Alan C. MCALLISTER, Ting ZHONG
  • Patent number: 9860988
    Abstract: Embodiments of the present disclosure are directed towards techniques and configurations to provide solder contacts for electrical connection in socket assemblies. In one embodiment, a solder contact may be disposed on the bottom surface of a die package such that the solder contact is conductively coupled to electrical contacts of the die package. The solder contacts may be disposed to be coupled to pins of a socket assembly, to provide conductive coupling of the electrical contacts of the die package and the pins of the socket assembly. The solder may be selected to be sufficiently soft to provide for better electrical conduction. The pins may also be configured to penetrate the solder contact to provide for better electrical conduction. Other embodiments may be described and/or claimed.
    Type: Grant
    Filed: December 20, 2014
    Date of Patent: January 2, 2018
    Assignee: Intel Corporation
    Inventors: Fay Hua, Hong Xie, Gregorio R. Murtagian, Amit Abraham, Alan C. Mcallister, Ting Zhong
  • Publication number: 20160338199
    Abstract: Embodiments of the present disclosure are directed towards techniques and configurations to provide solder contacts for electrical connection in socket assemblies. In one embodiment, a solder contact may be disposed on the bottom surface of a die package such that the solder contact is conductively coupled to electrical contacts of the die package. The solder contacts may be disposed to be coupled to pins of a socket assembly, to provide conductive coupling of the electrical contacts of the die package and the pins of the socket assembly. The solder may be selected to be sufficiently soft to provide for better electrical conduction. The pins may also be configured to penetrate the solder contact to provide for better electrical conduction. Other embodiments may be described and/or claimed.
    Type: Application
    Filed: December 20, 2014
    Publication date: November 17, 2016
    Inventors: Fay HUA, Hong XIE, Gregorio R. MURTAGIAN, Amit ABRAHAM, Alan C. MCALLISTER, Ting ZHONG
  • Patent number: 7360441
    Abstract: Manufacturers test printed circuit boards (PCB) to ensure that all components have been soldered to the correctly. Some tests cause the boards to deflect, which can damage component-to-board interfaces (i.e., solder joints) or components. Embodiments of the present invention measure the amount of PCB deflection before, during, and after the PCB is subject to mechanical load using photoelectric amplifiers, which send and receive light beams to targets mounted on the PCB surface through optical fibers and lenses mounted in a head assembly. The intensity of received light beams are proportional to analog voltages output by the photoelectric amplifiers and to the distance between the head assemblies and the targets. A data acquisition system converts the analog voltages to digital voltages and a software interface correlates the digital voltages to PCB deflection/displacement. A GUI displays deflection before, during, and after the PCB is subject to mechanical load.
    Type: Grant
    Filed: March 19, 2007
    Date of Patent: April 22, 2008
    Assignee: Intel Corporation
    Inventors: Alan C. McAllister, Wade W. Hezeltine
  • Patent number: 7231833
    Abstract: Manufacturers test printed circuit boards (PCB) to ensure that all components have been soldered to the correctly. Some tests cause the boards to deflect, which can damage component-to-board interfaces (i.e., solder joints) or components. Embodiments of the present invention measure the amount of PCB deflection before, during, and after the PCB is subject to mechanical load using photoelectric amplifiers, which send and receive light beams to targets mounted on the PCB surface through optical fibers and lenses mounted in a head assembly. The intensity of received light beams are proportional to analog voltages output by the photoelectric amplifiers and to the distance between the head assemblies and the targets. A data acquisition system converts the analog voltages to digital voltages and a software interface correlates the digital voltages to PCB deflection/displacement. A GUI displays deflection before, during, and after the PCB is subject to mechanical load.
    Type: Grant
    Filed: April 1, 2003
    Date of Patent: June 19, 2007
    Assignee: Intel Corporation
    Inventors: Alan C. McAllister, Wade W. Hezeltine
  • Publication number: 20040197102
    Abstract: Manufacturers test printed circuit boards (PCB) to ensure that all components have been soldered to the correctly. Some tests cause the boards to deflect, which can damage component-to-board interfaces (i.e., solder joints) or components. Embodiments of the present invention measure the amount of PCB deflection before, during, and after the PCB is subject to mechanical load using photoelectric amplifiers, which send and receive light beams to targets mounted on the PCB surface through optical fibers and lenses mounted in a head assembly. The intensity of received light beams are proportional to analog voltages output by the photoelectric amplifiers and to the distance between the head assemblies and the targets. A data acquisition system converts the analog voltages to digital voltages and a software interface correlates the digital voltages to PCB deflection/displacement. A GUI displays deflection before, during, and after the PCB is subject to mechanical load.
    Type: Application
    Filed: April 1, 2003
    Publication date: October 7, 2004
    Inventors: Alan C. McAllister, Wade W. Hezeltine