Patents by Inventor Alan C. Nelson

Alan C. Nelson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11885732
    Abstract: A classification training method for training classifiers adapted to identify specific mutations associated with different cancer including identifying driver mutations. First cells from mutation cell lines derived from conditions having the number of driver mutations are acquired and 3D image feature data from the number of first cells is identified. 3D cell imaging data from the number of first cells and from other malignant cells is generated, where cell imaging data includes a number of first individual cell images. A second set of 3D cell imaging data is generated from a set of normal cells where the number of driver mutations are expected to occur, where the second set of cell imaging data includes second individual cell images. Supervised learning is conducted based on cell line status as ground truth to generate a classifier.
    Type: Grant
    Filed: October 18, 2022
    Date of Patent: January 30, 2024
    Assignee: VisionGate, Inc.
    Inventors: Michael G. Meyer, Daniel J. Sussman, Rahul Katdare, Laimonas Kelbauskas, Alan C. Nelson, Randall Mastrangelo
  • Publication number: 20230289407
    Abstract: A method for a system and method for morphometric detection of malignancy associated change (MAC) is disclosed including the acts of obtaining a sample; imaging cells to produce 3D cell images for each cell; measuring a plurality of different structural biosignatures for each cell from its 3D cell image to produce feature data; analyzing the feature data by first using cancer case status as ground truth to supervise development of a classifier to test the degree to which the features discriminate between cells from normal or cancer patients; using the analyzed feature data to develop classifiers including, a first classifier to discriminate normal squamous cells from normal and cancer patients, a second classifier to discriminate normal macrophages from normal and cancer patients, and a third classifier to discriminate normal bronchial columnar cells from normal and cancer patients.
    Type: Application
    Filed: December 12, 2022
    Publication date: September 14, 2023
    Inventors: Michael G. Meyer, Laimonas Kelbauskas, Rahul Katdare, Daniel J. Sussman, Timothy Bell, Alan C. Nelson
  • Publication number: 20230050322
    Abstract: A classification training method for training classifiers adapted to identify specific mutations associated with different cancer including identifying driver mutations. First cells from mutation cell lines derived from conditions having the number of driver mutations are acquired and 3D image feature data from the number of first cells is identified. 3D cell imaging data from the number of first cells and from other malignant cells is generated, where cell imaging data includes a number of first individual cell images. A second set of 3D cell imaging data is generated from a set of normal cells where the number of driver mutations are expected to occur, where the second set of cell imaging data includes second individual cell images. Supervised learning is conducted based on cell line status as ground truth to generate a classifier.
    Type: Application
    Filed: October 18, 2022
    Publication date: February 16, 2023
    Inventors: Michael G. Meyer, Daniel J. Sussman, Rahul Katdare, Laimonis Kelbauskas, Alan C. Nelson, Randall Mastrangelo
  • Patent number: 11551043
    Abstract: A method for a system and method for morphometric detection of malignancy associated change (MAC) is disclosed including the acts of obtaining a sample; imaging cells to produce 3D cell images for each cell; measuring a plurality of different structural biosignatures for each cell from its 3D cell image to produce feature data; analyzing the feature data by first using cancer case status as ground truth to supervise development of a classifier to test the degree to which the features discriminate between cells from normal or cancer patients; using the analyzed feature data to develop classifiers including, a first classifier to discriminate normal squamous cells from normal and cancer patients, a second classifier to discriminate normal macrophages from normal and cancer patients, and a third classifier to discriminate normal bronchial columnar cells from normal and cancer patients.
    Type: Grant
    Filed: February 28, 2019
    Date of Patent: January 10, 2023
    Assignee: VISIONGATE, INC.
    Inventors: Michael G. Meyer, Laimonas Kelbauskas, Rahul Katdare, Daniel J. Sussman, Timothy Bell, Alan C. Nelson
  • Patent number: 11545237
    Abstract: A classification training method for training classifiers adapted to identify specific mutations associated with different cancer including identifying driver mutations. First cells from mutation cell lines derived from conditions having the number of driver mutations are acquired and 3D image feature data from the number of first cells is identified. 3D cell imaging data from the number of first cells and from other malignant cells is generated, where cell imaging data includes a number of first individual cell images. A second set of 3D cell imaging data is generated from a set of normal cells where the number of driver mutations are expected to occur, where the second set of cell imaging data includes second individual cell images. Supervised learning is conducted based on cell line status as ground truth to generate a classifier.
    Type: Grant
    Filed: September 26, 2018
    Date of Patent: January 3, 2023
    Assignee: VISIONGATE, INC.
    Inventors: Michael G. Meyer, Daniel J. Sussman, Rahul Katdare, Laimonas Kelbauskas, Alan C. Nelson, Randall Mastrangelo
  • Patent number: 11065260
    Abstract: A method of reducing mortality in a human patient with pulmonary inflammation due to coronavirus or other pathogen, the method including administering an oral dose of a prostacyclin analog drug to the patient within a therapeutic window. The prostacyclin analog drug includes oral iloprost or iloprost betadex clathrate.
    Type: Grant
    Filed: April 13, 2020
    Date of Patent: July 20, 2021
    Inventors: Alan C Nelson, Daniel J Sussman
  • Patent number: 11069054
    Abstract: A method of treating a malignancy in a human subject by analyzing pseudo-projection images of cells obtained from a sputum specimen obtained from a subject employs a biological specimen classifier that identifies cells from the sputum specimen as normal or abnormal. If abnormal cells are detected, then the abnormal cells are further classified as dysplastic or cancerous. If the cells are classified as dysplastic, then an immunomodulating agent is administered to the subject over a predetermined time period designed to achieve a therapeutic dosage.
    Type: Grant
    Filed: January 11, 2017
    Date of Patent: July 20, 2021
    Assignee: VisionGate, Inc.
    Inventors: Alan C. Nelson, Michael G. Meyer, Daniel J. Sussman
  • Publication number: 20210210169
    Abstract: A classification training method for training classifiers adapted to identify specific mutations associated with different cancer including identifying driver mutations. First cells from mutation cell lines derived from conditions having the number of driver mutations are acquired and 3D image feature data from the number of first cells is identified. 3D cell imaging data from the number of first cells and from other malignant cells is generated, where cell imaging data includes a number of first individual cell images. A second set of 3D cell imaging data is generated from a set of normal cells where the number of driver mutations are expected to occur, where the second set of cell imaging data includes second individual cell images. Supervised learning is conducted based on cell line status as ground truth to generate a classifier.
    Type: Application
    Filed: September 26, 2018
    Publication date: July 8, 2021
    Applicant: VISIONGATE, INC.
    Inventors: Michael G. MEYER, Daniel J. SUSSMAN, Rahul KATDARE, Laimonis KELBAUSKAS, Alan C. NELSON, Randall MASTRANGELO
  • Publication number: 20210200987
    Abstract: A method to develop one or more morphometric classifiers to identify a mismatch repair deficiency (MMRD). The method provides a non-invasive method of characterizing MMRD that is responsive to a tumor in its early stages of development and irrespective of the tumor size. The method allows targeting cancer therapy to the specific characteristics of the cancer that the patient may have, allowing more efficient cancer management with far fewer side effects.
    Type: Application
    Filed: June 5, 2019
    Publication date: July 1, 2021
    Applicant: VISIONGATE, INC.
    Inventors: Daniel J. Sussman, Michael G. Meyer, Randall Mastrangelo, Alan C. Nelson
  • Publication number: 20210049425
    Abstract: A method for a system and method for morphometric detection of malignancy associated change (MAC) is disclosed including the acts of obtaining a sample; imaging cells to produce 3D cell images for each cell; measuring a plurality of different structural biosignatures for each cell from its 3D cell image to produce feature data; analyzing the feature data by first using cancer case status as ground truth to supervise development of a classifier to test the degree to which the features discriminate between cells from normal or cancer patients; using the analyzed feature data to develop classifiers including, a first classifier to discriminate normal squamous cells from normal and cancer patients, a second classifier to discriminate normal macrophages from normal and cancer patients, and a third classifier to discriminate normal bronchial columnar cells from normal and cancer patients.
    Type: Application
    Filed: February 28, 2019
    Publication date: February 18, 2021
    Applicant: VISIONGATE, INC.
    Inventors: Michael G. Meyer, Laimonis Kelbauskas, Rahul Katdare, Daniel J. Sussman, Timothy Bell, Alan C. Nelson
  • Publication number: 20200370130
    Abstract: A method to develop one or more morphometric classifiers to identify a tumor mutation burden (TMB). The method provides a non-invasive method of characterizing TMB that is responsive to a tumor in its early stages of development and irrespective of the tumor size. The method allows targeting cancer therapy to the specific characteristics of the cancer that the patient may have, allowing more efficient cancer management with far fewer side effects.
    Type: Application
    Filed: January 4, 2019
    Publication date: November 26, 2020
    Applicant: VISIONGATE, INC.
    Inventors: Daniel J. Sussman, Michael Meyer G. Meyer, Laimonis Kelbauskas, Alan C. Nelson, Randall Mastrangelo
  • Publication number: 20170140533
    Abstract: A method of treating a malignancy in a human subject by analyzing pseudo-projection images of cells obtained from a sputum specimen obtained from a subject employs a biological specimen classifier that identifies cells from the sputum specimen as normal or abnormal. If abnormal cells are detected, then the abnormal cells are further classified as dysplastic or cancerous. If the cells are classified as dysplastic, then an immunomodulating agent is administered to the subject over a predetermined time period designed to achieve a therapeutic dosage.
    Type: Application
    Filed: January 11, 2017
    Publication date: May 18, 2017
    Applicant: VISIONGATE, INC.
    Inventors: Alan C. Nelson, Michael G. Meyer
  • Patent number: 8368035
    Abstract: A method for 3D imaging of cells in an optical tomography system includes moving a biological object relatively to a microscope objective to present varying angles of view. The biological object is illuminated with radiation having a spectral bandwidth limited to wavelengths between 150 nm and 390 nm. Radiation transmitted through the biological object and the microscope objective is sensed with a camera from a plurality of differing view angles. A plurality of pseudoprojections of the biological object from the sensed radiation is formed and the plurality of pseudoprojections is reconstructed to form a 3D image of the cell.
    Type: Grant
    Filed: February 22, 2012
    Date of Patent: February 5, 2013
    Assignee: Visiongate Inc.
    Inventors: Eric J. Seibel, Alan C. Nelson, Mark E. Fauver, J. Richard Rahn
  • Publication number: 20120145926
    Abstract: A method for 3D imaging of cells in an optical tomography system includes moving a biological object relatively to a microscope objective to present varying angles of view. The biological object is illuminated with radiation having a spectral bandwidth limited to wavelengths between 150 nm and 390 nm. Radiation transmitted through the biological object and the microscope objective is sensed with a camera from a plurality of differing view angles. A plurality of pseudoprojections of the biological object from the sensed radiation is formed and the plurality of pseudoprojections is reconstructed to form a 3D image of the cell.
    Type: Application
    Filed: February 22, 2012
    Publication date: June 14, 2012
    Applicant: VISIONGATE, INC.
    Inventors: Eric J. Seibel, Alan C. Nelson, Mark E. Fauver, J. Richard Rahn
  • Patent number: 8143600
    Abstract: A method for 3D imaging of cells in an optical tomography system includes moving a biological object relatively to a microscope objective to present varying angles of view. The biological object is illuminated with radiation having a spectral bandwidth limited to wavelengths between 150 nm and 390 nm. Radiation transmitted through the biological object and the microscope objective is sensed with a camera from a plurality of differing view angles. A plurality of pseudoprojections of the biological object from the sensed radiation is formed and the plurality of pseudoprojections is reconstructed to form a 3D image of the cell.
    Type: Grant
    Filed: February 18, 2008
    Date of Patent: March 27, 2012
    Assignee: Visiongate, Inc.
    Inventors: Eric J. Seibel, Alan C. Nelson, Mark E. Fauver, J. Richard Rahn
  • Patent number: 7907765
    Abstract: An optical tomography system for imaging an object of interest including a light source for illuminating the object of interest with a plurality of radiation beams. The object of interest is held within an object containing tube such that it is illuminated by the plurality of radiation beams to produce emerging radiation from the object containing tube, a detector array is located to receive the emerging radiation and produce imaging data used by a mechanism for tracking the object of interest.
    Type: Grant
    Filed: September 18, 2006
    Date of Patent: March 15, 2011
    Assignees: University of Washington, Visiongate, Inc.
    Inventors: Mark E. Fauver, Eric J. Seibel, Michael G. Meyer, Alan C. Nelson, J. Richard Rahn, Thomas Neumann, Roger H. Johnson
  • Publication number: 20100322494
    Abstract: An optical tomography system for imaging an object of interest including a light source for illuminating the object of interest with a plurality of radiation beams. The object of interest is held within an object containing tube such that it is illuminated by the plurality of radiation beams to produce emerging radiation from the object containing tube, a detector array is located to receive the emerging radiation and produce imaging data used by a mechanism for tracking the object of interest.
    Type: Application
    Filed: September 18, 2006
    Publication date: December 23, 2010
    Applicants: University of Washington, VISIONGATE, INC.
    Inventors: Mark E. Fauver, Eric J. Seibel, Michael G. Meyer, Alan C. Nelson, J. Richard Rahn, Thomas Neumann, Roger H. Johnson
  • Patent number: 7811825
    Abstract: A scanning method for scanning samples of biological cells using optical tomography includes preparing, acquiring, reconstructing and viewing three-dimensional images of cell samples. Concentration and enrichment of the cell sample follows. The cell sample is stained. Cells are isolated from the cell sample and purified. A cell/solvent mixture is injected into a gel by centrifugation. A cell/gel mixture is injected into a capillary tube until a cell appears centered in a field of view using a stopped-flow method. An optical imaging system, such as a fixed or variable motion optical tomography system acquires a projection image. The sample is rotated about a tube axis to generate additional projections. Once image acquisition is completed, the acquired image projections are corrected for errors. A computer or other equivalent processor is used to compute filtered backprojection information for 3D reconstruction.
    Type: Grant
    Filed: October 13, 2004
    Date of Patent: October 12, 2010
    Assignees: University of Washington, VisionGate, Inc.
    Inventors: Mark E. Fauver, J. Richard Rahn, Eric J. Seibel, Alan C. Nelson
  • Patent number: 7738945
    Abstract: A system for optical imaging of a thick specimen that permits rapid acquisition of data necessary for tomographic reconstruction of the three-dimensional (3D) image. One method involves the scanning of the focal plane of an imaging system and integrating the range of focal planes onto a detector. The focal plane of an optical imaging system is scanned along the axis perpendicular to said plane through the thickness of a specimen during a single detector exposure. Secondly, methods for reducing light scatter when using illumination point sources are presented. Both approaches yield shadowgrams. This process is repeated from multiple perspectives, either in series using a single illumination/detection subsystem, or in parallel using several illumination/detection subsystems. A set of pseudo-projections is generated, which are input to a three dimensional tomographic image reconstruction algorithm.
    Type: Grant
    Filed: November 18, 2003
    Date of Patent: June 15, 2010
    Assignees: University of Washington, VisionGate, Inc.
    Inventors: Mark E. Fauver, J. Richard Rahn, Eric J. Seibel, Alan C. Nelson
  • Publication number: 20090208072
    Abstract: A method for 3D imaging of cells in an optical tomography system includes moving a biological object relatively to a microscope objective to present varying angles of view. The biological object is illuminated with radiation having a spectral bandwidth limited to wavelengths between 150 nm and 390 nm. Radiation transmitted through the biological object and the microscope objective is sensed with a camera from a plurality of differing view angles. A plurality of pseudoprojections of the biological object from the sensed radiation is formed and the plurality of pseudoprojections is reconstructed to form a 3D image of the cell.
    Type: Application
    Filed: February 18, 2008
    Publication date: August 20, 2009
    Applicant: VISIONGATE, INC.
    Inventors: Eric J. Seibel, Alan C. Nelson, Mark E. Fauver, J. Richard Rahn