Patents by Inventor Alan C. Nilsson

Alan C. Nilsson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20030095737
    Abstract: A photonic integrated circuit (PIC) chip comprising an array of modulated sources, each providing a modulated signal output at a channel wavelength different from the channel wavelength of other modulated sources and a wavelength selective combiner having an input optically coupled to received all the signal outputs from the modulated sources and provide a combined output signal on an output waveguide from the chip. The modulated sources, combiner and output waveguide are all integrated on the same chip.
    Type: Application
    Filed: October 8, 2002
    Publication date: May 22, 2003
    Inventors: David F. Welch, Vincent G. Dominic, Fred A. Kish, Mark J. Missey, Radhakrishnan L. Nagarajan, Atul Mathur, Frank H. Peters, Robert B. Taylor, Matthew L. Mitchell, Alan C. Nilsson, Stephen G. Grubb, Richard P. Schneider, Charles H. Joyner, Jonas Webjorn, Drew D. Perkins
  • Publication number: 20030095736
    Abstract: A monolithic transmitter photonic integrated circuit (TxPIC) chip comprises an array of modulated sources formed on the PIC chip and having different operating wavelengths according to a standardized wavelength grid and providing signal outputs of different wavelengths. Pluralities of wavelength tuning elements are integrated on the chip, one associated with each of the modulated sources. An optical combiner is formed on the PIC chip and the signal outputs of the modulated sources are optically coupled to one or more inputs of the optical combiner and provided as a combined channel signal output from the combiner. The wavelength tuning elements provide for tuning the operating wavelength of the respective modulated sources to be approximate or to be chirped to the standardized wavelength grid. The wavelength tuning elements are temperature changing elements, current and voltage changing elements or bandgap changing elements.
    Type: Application
    Filed: October 8, 2002
    Publication date: May 22, 2003
    Inventors: Fred A. Kish, Charles H. Joyner, David F. Welch, Jonas Webjorn, Robert B. Taylor, Alan C. Nilsson
  • Patent number: 5940196
    Abstract: A wavelength division multiplexer (WDM) in an optical fiber transmission system launches analog signals, for instance a multi-channel television signal. The WDM enhances signal quality by transmitting along a single fiber two different optical wavelength signals, each carrying identical RF information. This results in a 3 dB improvement in carrier to noise ratio. The WDM combines two or more wavelengths centered around for instance 1550 nm or 1310 nm. A typical difference between the two wavelengths is 3 nm. In other embodiments, more than two wavelengths are used. The receiver is for instance a single photosensitive element. The phase of the two RF signals is adjusted in the optical or RF domain to be the same upon arrival at the receiver. In other embodiments, the receiver includes two photosensitive elements, each receiving from a receiver end WDM a single wavelength. In this case, the phase adjustment may be applied at the receiver in the optical or RF domain.
    Type: Grant
    Filed: May 16, 1997
    Date of Patent: August 17, 1999
    Assignee: Harmonic Lightwaves, Inc.
    Inventors: David Piehler, Xingyu Zou, Alan C. Nilsson, Chien-Yu Kuo
  • Patent number: 5828477
    Abstract: An optical transmission system enables launching at least 17 dBm of optical power at 1550 nm wavelength into an e.g. 50 km long span of standard telecommunications single-mode optical fiber, without incurring unacceptable penalties from stimulated Brillouin scattering, damage to optical phase modulators from excessive drive power or thermal effects, or signal degradations caused by the SBS suppression. High frequency modulation of the laser drive current is combined with lower frequency modulation of the phase of the laser output light that is itself varied over a range of approximately 25 MHz. This two tone modulation raises the SBS threshold to greater than 17 dBm in the 1550 nm wavelength region when the laser has a line width less than 10 MHz, under cw operation. By thereby dividing the task of spectral partitioning between the laser and the phase modulator, the RF input power level to the phase modulator is manageable and the laser operates in a regime that does not cause clipping.
    Type: Grant
    Filed: November 16, 1995
    Date of Patent: October 27, 1998
    Assignee: Harmonic Lightwaves, Inc.
    Inventors: Alan C. Nilsson, Chien-Yu Kuo, Joseph Kleefeld, Charles H. Gall, Alfred Nicholson Riddle, Harry Chou
  • Patent number: 5177764
    Abstract: The present invention provides a means of inducing unidirectional oscillation in monolithic and composite ring lasers in which the light path is planar. The intracavity optical diode that enforces unidirectional oscillation in the planar ring oscillator is achieved by a combination of the nonreciprocal Faraday effect, a linear birefringence effect in which the principal axes of the birefringence are not parallel and perpendicular to the plane of propagation of the ring light path, and one or more partial polarizer effects. The present invention enables experimental optimization of polarization transformations within a planar ring oscillator, even if the oscillator is monolithic, and also provides a means of tuning the frequency of the planar ring oscillator.
    Type: Grant
    Filed: January 9, 1990
    Date of Patent: January 5, 1993
    Assignee: Harmonic Lightwaves, Inc.
    Inventor: Alan C. Nilsson
  • Patent number: 5043996
    Abstract: A monolithic nonplanar ring oscillator having an optically isotropic solid-state laser body for propagating laser radiation about a nonplanar ring path internal to the laser body is disclosed. The monolithic laser body is configured to produce a 2N reflection nonplanar ring light path, where N is an integer greater than or equal to 2, comprising 2N-1 total internal reflections and one reflection at a coupler in a single round trip. Undirectional traveling wave oscillation of the laser is induced by the geometry of the nonplanar ring path together with the effect of an applied magnetic field and partial polarizer characteristics of the oblique reflection from the coupler.
    Type: Grant
    Filed: March 31, 1989
    Date of Patent: August 27, 1991
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Alan C. Nilsson, Robert L. Byer
  • Patent number: 5027367
    Abstract: A monolithic Nd:glass nonplanar ring laser and method for determining optimal nonplanar ring oscillator geometry for a monolithic nonplanar ring oscillator, including an arrangement for determining for a given material of a specific index of refraction and an accompanying angle of incidence the most suitable geometry for creating a monolithic nonplanar ring oscillator out of said material to produce unidirectional operation with simultaneous high differential loss and lowest overall loss. The index of refraction and angle of incidence being within a predefined range. The geometries include four, five and six bounce monolithic nonplanar ring oscillators.
    Type: Grant
    Filed: March 31, 1989
    Date of Patent: June 25, 1991
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Edward C. Rea, Jr., Alan C. Nilsson