Patents by Inventor Alan D. Berry

Alan D. Berry has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6649091
    Abstract: An electrically conducting composite is made by providing an aerogel structure of nonconducting material, exposing the aerogel structure to a mixture of RuO4 and a nonpolar solvent in an inert atmosphere, wherein the mixture is held initially at a first temperature that is below the temperature at which RuO4 decomposes into RuO2 in the nonpolar solvent and in the presence of the aerogel, and allowing the mixture to warm to a second temperature that is above the temperature at which RuO4 decomposes to RuO2 in the nonpolar solvent and in the presence of the aerogel, wherein the rate of warming is controlled so that as the mixture warms and the RuO4 begins to decompose into RuO2, the newly formed RuO2 is deposited throughout the aerogel structure as a three-dimensionally networked conductive deposit.
    Type: Grant
    Filed: September 19, 2001
    Date of Patent: November 18, 2003
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Joseph V. Ryan, Celia I. Merzbacher, Alan D. Berry, Debra R. Rolison, Jeffery W. Long
  • Publication number: 20030062512
    Abstract: An electrically conducting composite is made by providing an aerogel structure of nonconducting material, exposing the aerogel structure to a mixture of RuO4 and a nonpolar solvent in an inert atmosphere, wherein the mixture is held initially at a first temperature that is below the temperature at which RuO4 decomposes into RuO2 in the nonpolar solvent and in the presence of the aerogel, and allowing the mixture to warm to a second temperature that is above the temperature at which RuO4 decomposes to RuO2 in the nonpolar solvent and in the presence of the aerogel, wherein the rate of warming is controlled so that as the mixture warms and the RuO4 begins to decompose into RuO2, the newly formed RuO2 is deposited throughout the aerogel structure as a three-dimensionally networked conductive deposit.
    Type: Application
    Filed: September 19, 2001
    Publication date: April 3, 2003
    Inventors: Joseph V. Ryan, Celia I. Merzbacher, Alan D. Berry, Debra R. Rolison, Jeffery W. Long
  • Patent number: 6296678
    Abstract: This invention pertains to an article that emits infrared radiation for a period of about 15 minutes or more, depending on the size and shape, and to a process for preparing the article. The article includes, in a preferred embodiment, a combustible aerogel or other nanocellular substrate with iron metal impregnant formed by thermal decomposition of iron pentacarbonyl deposited on and in the substrate in an amount of at least about 5% or at least about 20% of the weight of the substrate, depending on the substrate. The impregnant reacts exothermically on contact with air or an oxygen-containing gas and imparts sufficient energy to the substrate to cause it to burn for about 30 seconds to about 30 minutes depending on size and shape, thereby emitting infrared radiation. The process pertains to deposition of the impregnant on and in the substrate by flowing a carrier gas saturated with the impregnant precursor over and through the substrate.
    Type: Grant
    Filed: August 27, 1999
    Date of Patent: October 2, 2001
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Celia Merzbacher, Ken Limparis, Robert Bernstein, Debra Rolison, Zachary J. Homrighaus, Alan D. Berry
  • Patent number: 6290880
    Abstract: An electrically conducting composite is made by providing an aerogel structure of nonconducting material, exposing the aerogel structure to a mixture of RuO4 and a nonpolar solvent in an inert atmosphere, wherein the mixture is held initially at a first temperature that is below the temperature at which RuO4 decomposes into RuO2 in the nonpolar solvent and in the presence of the aerogel, and allowing the mixture to warm to a second temperature that is above the temperature at which RuO4 decomposes to RuO2 in the nonpolar solvent and in the presence of the aerogel, wherein the rate of warming is controlled so that as the mixture warms and the RuO4 begins to decompose into RuO2, the newly formed RuO2 is deposited throughout the aerogel structure as a three-dimensionally networked conductive deposit.
    Type: Grant
    Filed: December 1, 1999
    Date of Patent: September 18, 2001
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Joseph V. Ryan, Celia I. Merzbacher, Alan D. Berry, Debra R. Rolison, Jeffery W. Long
  • Patent number: 5314866
    Abstract: A CVD process for forming a layer or layers of superconducting materials on a semiconductor substrate in which volatile organometallic compounds of bismuth, strontium, calcium and copper are heated in the presence of a carrier gas in a first chamber free of hydrolyzing agents. Under conditions free of hydrolyzing agents, the carrier gas transports a predetermined quantity of the volatile organometallic compounds of the bismuth, strontium, calcium and copper to a deposition chamber. The compounds are decomposed and deposit mixed oxides on the substrate. Subsequent to deposition of the mixed oxides of the desired elements the layer is sintered in an oxygen-rich atmosphere, and formed into a superconducting film by subsequent slow cooling still in an oxygen-rich atmosphere.
    Type: Grant
    Filed: May 16, 1989
    Date of Patent: May 24, 1994
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Alan D. Berry, David K. Gaskill, Ronald T. Holm, Edward J. Cukauskas, Raphael Kaplan, Richard L. Henry
  • Patent number: 4982019
    Abstract: The invention relates to precursors useful for the preparation by CVD of superconducting thin films. The precursors are the volatile alkoxides of the formula M(OR).sub.2, wherein M is selected from the group consisting of Ba, Ca, and Sr, and R is selected from the group consisting of unsubstituted alkyl groups of 6 to 13 carbons and halogen substituted alkyl groups of 3 to 4 carbons wherein the halogen is selected from the group consisting of fluoride and chlorine and at least two of the halogen substitutions are fluorine. The secondary or tertiary alkyl groups are preferred and the tertiary alkyl groups are most preferred.
    Type: Grant
    Filed: July 31, 1989
    Date of Patent: January 1, 1991
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Andrew Purdy, Alan D. Berry
  • Patent number: 4478890
    Abstract: A low-temperature, electroless process for the plating of nickel metal upon substrate. Nickel, olefin, and trifluorophosphine vapors are condensed and reacted in a vessel. The reaction product is distilled off and condensed onto the surface of a substrate. The surface is warmed and the reaction product allowed to decompose, yielding a coating of nickel metal upon the substrate, gaseous olefin and Ni(PF.sub.3).sub.4.
    Type: Grant
    Filed: September 12, 1983
    Date of Patent: October 23, 1984
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventor: Alan D. Berry