Patents by Inventor Alan E. Freeman

Alan E. Freeman has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230325332
    Abstract: A method is performed by a bus coupler of a subnetwork of one or more local subnetworks coupled to an overall network is provided, including performing a local discovery process for discovering and identifying one or more bus devices included in the subnetwork. The method further includes submitting an internet protocol (IP) address request to obtain an IP address for the bus coupler, receiving at the bus coupler the IP address of the bus coupler in response to the IP address assignment request, submitting a configuration request for configuration information associated with a device name for the bus coupler, receiving the configuration information in response to the configuration request, and configuring at least one feature of the bus coupler using the configuration information, wherein the device name is based on identifier(s) of the respective one or more bus devices obtained by the discovery process.
    Type: Application
    Filed: April 12, 2022
    Publication date: October 12, 2023
    Applicant: Schneider Electric USA, Inc.
    Inventors: Alan E. Freeman, Benjamin W. Edwards, Matthew L. White, Kevin Jefferies
  • Patent number: 11646681
    Abstract: Techniques for monitoring the health of a three-phase induction motor are provided. An expected threshold value is calculated as a function of an expected ratio of current unbalance to voltage unbalance for the three-phase motor. Embodiments determine whether a measured current unbalance exceeds the expected threshold value. Responsive to the measured current unbalance exceeding the expected threshold value, a remedial action may be taken, such as generating diagnostic information or activating one or more protection operations for the three-phase induction motor.
    Type: Grant
    Filed: August 22, 2022
    Date of Patent: May 9, 2023
    Assignee: Schneider Electric USA, Inc.
    Inventors: Kevin M. Jefferies, Benjamin W. Edwards, Alan E. Freeman, Richard K Weiler, Matthew L. White
  • Publication number: 20220399837
    Abstract: Techniques for monitoring the health of a three-phase induction motor are provided. An expected threshold value is calculated as a function of an expected ratio of current unbalance to voltage unbalance for the three-phase motor. Embodiments determine whether a measured current unbalance exceeds the expected threshold value. Responsive to the measured current unbalance exceeding the expected threshold value, a remedial action may be taken, such as generating diagnostic information or activating one or more protection operations for the three-phase induction motor.
    Type: Application
    Filed: August 22, 2022
    Publication date: December 15, 2022
    Applicant: Schneider Electric USA, Inc.
    Inventors: Kevin M. JEFFERIES, Benjamin W. EDWARDS, Alan E. FREEMAN, Richard K WEILER, Matthew L. WHITE
  • Patent number: 11451171
    Abstract: Techniques for monitoring the health of a three-phase induction motor are provided. An expected threshold value is calculated as a function of an expected ratio of current unbalance to voltage unbalance for the three-phase motor. Embodiments determine whether a measured current unbalance exceeds the expected threshold value. Responsive to the measured current unbalance exceeding the expected threshold value, a remedial action may be taken, such as generating diagnostic information or activating one or more protection operations for the three-phase induction motor.
    Type: Grant
    Filed: June 19, 2019
    Date of Patent: September 20, 2022
    Assignee: Schneider Electric USA, Inc.
    Inventors: Kevin M. Jefferies, Benjamin W. Edwards, Alan E. Freeman, Richard K Weiler, Matthew L. White
  • Patent number: 11353485
    Abstract: A measurement module receives a defined system topology and system component characteristics information for a system. The measurement module calculates an expected system impedance for the defined system topology. The measurement module collects one or more impedance measurements using a high frequency voltage stimulus. Finally, the measurement module compares the one or more impedance measurements with the expected system impedance to determine adequacy of protective grounding of the system.
    Type: Grant
    Filed: February 11, 2020
    Date of Patent: June 7, 2022
    Assignee: Schneider Electric USA, Inc.
    Inventors: Kevin M. Jefferies, Matthew L. White, Benjamin W. Edwards, Richard K. Weiler, Alan E. Freeman
  • Patent number: 11333690
    Abstract: A measurement module uses harmonic compensation factors to minimize the effects of harmonic distortion in measurements of a source current by a current sensor of the module. The module samples at a first sampling rate, measurements of the source current to generate a first current measurement. The module samples at a second sampling rate higher than the first sampling rate, for an interval of time, measurements of the source current to generate a second current measurement. The module determines a harmonic compensation factor based, at least, on a difference between the first current measurement and the second current measurement. The module determines a reported current computed as a function of at least the first current measurement, the difference between the first current measurement and the second current measurement, and the harmonic compensation factor. The reported current represents a magnitude of the source current adjusted by the harmonic compensation factor.
    Type: Grant
    Filed: December 16, 2019
    Date of Patent: May 17, 2022
    Assignee: Schneider Electric USA, Inc.
    Inventors: Kevin M. Jefferies, Benjamin W. Edwards, Richard K. Weiler, Alan E. Freeman
  • Publication number: 20220103549
    Abstract: A computer-implemented method is provided to automatically adjust a device setting of a plurality of networked devices. The method includes performing autonomously at a device of the plurality of networked devices, receiving a request to update a device setting to a new value, comparing a characteristic of the plurality of networked devices to a corresponding characteristic of the device, determining one or more similar devices of the plurality of devices that satisfy a similarity criteria based on a result of the comparison, and accessing the one or more similar devices to change the device setting of the one or more similar devices to the new value.
    Type: Application
    Filed: September 29, 2020
    Publication date: March 31, 2022
    Applicant: Schneider Electric USA, Inc.
    Inventors: Kevin M. Jefferies, Matthew L. White, Richard K. Weiler, Alan E. Freeman
  • Publication number: 20210247429
    Abstract: A measurement module receives a defined system topology and system component characteristics information for a system. The measurement module calculates an expected system impedance for the defined system topology. The measurement module collects one or more impedance measurements using a high frequency voltage stimulus. Finally, the measurement module compares the one or more impedance measurements with the expected system impedance to determine adequacy of protective grounding of the system.
    Type: Application
    Filed: February 11, 2020
    Publication date: August 12, 2021
    Applicant: Schneider Electric USA, Inc.
    Inventors: Kevin M. JEFFERIES, Matthew L. WHITE, Benjamin W. EDWARDS, Richard K. WEILER, Alan E. FREEMAN
  • Publication number: 20210181243
    Abstract: A measurement module uses harmonic compensation factors to minimize the effects of harmonic distortion in measurements of a source current by a current sensor of the module. The module samples at a first sampling rate, measurements of the source current to generate a first current measurement. The module samples at a second sampling rate higher than the first sampling rate, for an interval of time, measurements of the source current to generate a second current measurement. The module determines a harmonic compensation factor based, at least, on a difference between the first current measurement and the second current measurement. The module determines a reported current computed as a function of at least the first current measurement, the difference between the first current measurement and the second current measurement, and the harmonic compensation factor. The reported current represents a magnitude of the source current adjusted by the harmonic compensation factor.
    Type: Application
    Filed: December 16, 2019
    Publication date: June 17, 2021
    Applicant: Schneider Electric USA, Inc.
    Inventors: Kevin M. JEFFERIES, Benjamin W. EDWARDS, Richard K. WEILER, Alan E. FREEMAN
  • Publication number: 20210135942
    Abstract: Techniques for automatically configuring a computing device in a computing environment are provided. One embodiment includes determining that the computing device has been added to a computing environment and that at least one feature of the computing device is unconfigured. Device name data specifying at least two potential device identifiers for the computing device is received from a plurality of endpoint devices communicatively coupled to the computing device. A first device identifier is selected from the at least two potential device identifiers and device configuration data associated with the first device identifier is requested from a device configuration server. The at least one feature of the computing device can then be configured using the device configuration data.
    Type: Application
    Filed: November 5, 2019
    Publication date: May 6, 2021
    Applicant: Schneider Electric USA, Inc.
    Inventors: Kevin M. Jefferies, Matthew L. White, Alan E. Freeman, Richard Karl Weiler
  • Publication number: 20210119441
    Abstract: A progressive protection method automatically adapts a protection trip delay or fault timeout for a motor that is a member of a group of motors performing mutually similar or related tasks, based on the occurrence of a fault in another motor within the group, without requiring manual intervention. If the user requires stringent protection of the motors in a particular application, then the trip delay time for all of the motors in the group, may be shortened in response to recently-detected similar trips of other motors within the group. Alternatively, if the user prefers continuity of service for a particular application, then the trip delay time for all of the motors in the group, may be increased in response to recently-detected similar trips of other motors within the group, based on past experience with the occurrence of fault self-clearing for the motors in the group.
    Type: Application
    Filed: October 16, 2019
    Publication date: April 22, 2021
    Applicant: Schneider Electric USA, Inc.
    Inventors: Kevin M. JEFFERIES, Benjamin W. EDWARDS, Matthew L. WHITE, Alan E. FREEMAN, Richard K. WEILER
  • Patent number: 10985550
    Abstract: A progressive protection method automatically adapts a protection trip delay or fault timeout for a motor that is a member of a group of motors performing mutually similar or related tasks, based on the occurrence of a fault in another motor within the group, without requiring manual intervention. If the user requires stringent protection of the motors in a particular application, then the trip delay time for all of the motors in the group, may be shortened in response to recently-detected similar trips of other motors within the group. Alternatively, if the user prefers continuity of service for a particular application, then the trip delay time for all of the motors in the group, may be increased in response to recently-detected similar trips of other motors within the group, based on past experience with the occurrence of fault self-clearing for the motors in the group.
    Type: Grant
    Filed: October 16, 2019
    Date of Patent: April 20, 2021
    Assignee: Schneider Electric USA, Inc.
    Inventors: Kevin M. Jefferies, Benjamin W. Edwards, Matthew L. White, Alan E. Freeman, Richard K. Weiler
  • Publication number: 20200403537
    Abstract: Techniques for monitoring the health of a three-phase induction motor are provided. An expected threshold value is calculated as a function of an expected ratio of current unbalance to voltage unbalance for the three-phase motor. Embodiments determine whether a measured current unbalance exceeds the expected threshold value. Responsive to the measured current unbalance exceeding the expected threshold value, a remedial action may be taken, such as generating diagnostic information or activating one or more protection operations for the three-phase induction motor.
    Type: Application
    Filed: June 19, 2019
    Publication date: December 24, 2020
    Applicant: Schneider Electric USA, Inc.
    Inventors: Kevin M. JEFFERIES, Benjamin W. EDWARDS, Alan E. FREEMAN, Richard K WEILER, Matthew L. WHITE
  • Patent number: 10637383
    Abstract: A system and method is provided to monitor wear on a power factor correction capacitor in a motor system. The system and method obtains a baseline inductance angle, reactive power or power factor corresponding to a baseline power factor correction by the capacitor in the circuit; monitors a current supplied to the motor at a location upstream of the capacitor; monitors a voltage supplied to the motor, and determines a present inductance angle, reactive power or power factor based on the monitored current and voltage. The present inductance angle, reactive power or power factor corresponds to a present power factor correction by the capacitor. The system and method can then determine when the power factor correction of the capacitor has degraded to an unsatisfactory level based on a change in the inductance angle, reactive power or power factor from the baseline values, and take appropriate action.
    Type: Grant
    Filed: December 20, 2017
    Date of Patent: April 28, 2020
    Assignee: SCHNEIDER ELECTRIC USA, INC.
    Inventors: Richard K. Weiler, Benjamin W. Edwards, Alan E. Freeman, Kevin M. Jefferies, Julius M. Liptak, Matthew L. White
  • Patent number: 10539596
    Abstract: A system and method are provided to perform current sensor error compensation. The system and method involve obtaining a current measurement of a current on a circuit from a current sensor; obtaining a voltage measurement of a voltage associated with the current from a voltage sensor; determining a fundamental frequency of the voltage from the voltage measurement; and performing error compensation on the current measurement based on the determined fundamental frequency to produce a corrected current measurement. The current sensor error compensation may be performed to correct current measurements in a motor system, such as in a motor overload relay, at a low cost by using functionality already available in the system.
    Type: Grant
    Filed: December 21, 2017
    Date of Patent: January 21, 2020
    Assignee: Schneider Electric USA, Inc.
    Inventors: Kevin M. Jefferies, Benjamin W. Edwards, Matthew L. White, Alan E. Freeman
  • Patent number: 10511238
    Abstract: A method of performing temperature-based diagnostics for motor starters within a physical grouping of motor starters is performed by determining a presently expected temperature operating range for each starter based on measuring operating temperatures of the starters; measuring their current draws, and evaluating the temperature and load draw data in light of compensation values assigned for the known power ratings of the starter and the starter's physical location within the grouping. With the presently expected temperature operating range of the starter determined, and the periodic monitoring of starter temperatures, when an individual starter's temperature exceeds its expected range, a diagnostic warning will be issued for that starter and/or for the control panel itself as a guide for preventative maintenance. Alternately, the warning may be issued for an unexpected temperature rise for a given rise in current draw, or for values exceeding an expected rate of temperature change.
    Type: Grant
    Filed: November 15, 2017
    Date of Patent: December 17, 2019
    Assignee: Schneider Electric USA, Inc.
    Inventors: Kevin M Jefferies, Benjamin W Edwards, Matthew L White, Alan E Freeman, Richard Karl Weiler, Konstantin Alexander Filippenko, Julius Michael Liptak
  • Patent number: 10424913
    Abstract: In accordance with an example embodiment of the invention, in an overload relay for a three-phase motor, an adjusted threshold for detected current phase unbalance is dynamically determined at which the relay will be tripped. The adjusted threshold is a function of a ratio of an average of currents in the three-phases to the rated full load current of the motor, i.e., motor load. As the motor load decreases, the adjusted current phase unbalance threshold is increased, causing the resulting trip time to increase, thereby increasing motor run time and reducing downtime.
    Type: Grant
    Filed: December 20, 2017
    Date of Patent: September 24, 2019
    Assignee: SCHNEIDER ELECTRIC USA, INC.
    Inventors: Kevin M. Jefferies, Benjamin W. Edwards, Matthew L. White, Alan E. Freeman, Richard K. Weiler
  • Publication number: 20190195922
    Abstract: A system and method are provided to perform current sensor error compensation. The system and method involve obtaining a current measurement of a current on a circuit from a current sensor; obtaining a voltage measurement of a voltage associated with the current from a voltage sensor; determining a fundamental frequency of the voltage from the voltage measurement; and performing error compensation on the current measurement based on the determined fundamental frequency to produce a corrected current measurement. The current sensor error compensation may be performed to correct current measurements in a motor system, such as in a motor overload relay, at a low cost by using functionality already available in the system.
    Type: Application
    Filed: December 21, 2017
    Publication date: June 27, 2019
    Applicant: SCHNEIDER ELECTRIC USA, INC.
    Inventors: Kevin M. JEFFERIES, Benjamin W. EDWARDS, Matthew L. WHITE, Alan E. FREEMAN
  • Publication number: 20190190428
    Abstract: A system and method is provided to monitor wear on a power factor correction capacitor in a motor system. The system and method obtains a baseline inductance angle, reactive power or power factor corresponding to a baseline power factor correction by the capacitor in the circuit; monitors a current supplied to the motor at a location upstream of the capacitor; monitors a voltage supplied to the motor, and determines a present inductance angle, reactive power or power factor based on the monitored current and voltage. The present inductance angle, reactive power or power factor corresponds to a present power factor correction by the capacitor.
    Type: Application
    Filed: December 20, 2017
    Publication date: June 20, 2019
    Applicant: SCHNEIDER ELECTRIC USA, INC.
    Inventors: Richard K. WEILER, Benjamin W. Edwards, Alan E. FREEMAN, Kevin M. JEFFERIES, Julius M. LIPTAK, Matthew L. WHITE
  • Publication number: 20190190253
    Abstract: In accordance with an example embodiment of the invention, in an overload relay for a three-phase motor, an adjusted threshold for detected current phase unbalance is dynamically determined at which the relay will be tripped. The adjusted threshold is a function of a ratio of an average of currents in the three-phases to the rated full load current of the motor, i.e., motor load. As the motor load decreases, the adjusted current phase unbalance threshold is increased, causing the resulting trip time to increase, thereby increasing motor run time and reducing downtime.
    Type: Application
    Filed: December 20, 2017
    Publication date: June 20, 2019
    Applicant: SCHNEIDER ELECTRIC USA, INC.
    Inventors: Kevin M. JEFFERIES, Benjamin W. EDWARDS, Matthew L. WHITE, Alan E. FREEMAN, Richard K. WEILER