Patents by Inventor Alan F. Stewart

Alan F. Stewart has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11780027
    Abstract: Described herein is a system for processing a workpiece that includes a plurality of lasers that each produces a laser beam pulse. The system also includes a laser control module that sequences temporal characteristics of the laser beam pulses. Additionally, the system includes a laser beam compensation module that shapes a near field intensity profile of at least one of the laser beam pulses and adjusts a path length of at least one of the laser beam pulses. The system also includes at least one laser beam position element that combines the laser beam pulses to produce a combined laser beam pulse at a surface of the workpiece.
    Type: Grant
    Filed: March 6, 2019
    Date of Patent: October 10, 2023
    Assignee: The Boeing Company
    Inventors: Alan F. Stewart, Anthony J. Kay, Louis K. Zeldin, Andrea Koumvakalis
  • Patent number: 11215552
    Abstract: Apparatus and methods for laser bond inspection (LBI) of internal bonds in a composite structure with limited access. The technology solves the problem of access for an LBI process head through selection of optics, an articulated optical path and simplification of the method of collecting debris. A small-format process head is specifically designed for laser bond inspection in limited-access spaces. This process head allows access to locations within ½ inch of a nearby wall or structure and utilizes a laser beam that is much smaller (˜2-3 mm) in diameter. The apparatus incorporates articulated joints to improve access to locations in the structure being inspected. The process head may also be configured to protect the optical elements (e.g., the focusing lens) from blow-back of debris from the LBI inspection process.
    Type: Grant
    Filed: June 14, 2018
    Date of Patent: January 4, 2022
    Assignee: The Boeing Company
    Inventors: Alan F. Stewart, Marc J. Piehl
  • Patent number: 11143629
    Abstract: Apparatuses, systems, and methods are presented for calibrating an inspection system, particularly a Laser Bond Inspection (LBI) system that identifies a strength of a test structure. The disclosed calibration system comprises a calibration panel, a surface motion sensor, and a processing circuit. The surface motion sensor senses a compression wave generated in the calibration panel responsive to a laser pulse applied by a LBI head to the calibration panel. The processing circuit outputs a calibration result for the laser inspection system responsive to one or more characteristics of the sensed compression wave. The calibration system provides significantly faster calibration results, and thus may be implemented more frequently to improve the accuracy and repeatability of the inspection system.
    Type: Grant
    Filed: January 11, 2019
    Date of Patent: October 12, 2021
    Assignee: THE BOEING COMPANY
    Inventors: Alan F. Stewart, Marc Joel Piehl
  • Patent number: 11073500
    Abstract: A method for testing a structure using laser ultrasound includes steps of: (1) directing positioning light on a surface of the structure; (2) determining a spatial location and a spatial orientation of the surface from an evaluation of the positioning light reflected back from the surface; (3) directing pump light onto the surface to generate ultrasonic waves in the structure; (4) selectively locating a probe-light focal point of probe light on the surface, based on the spatial location determined for the surface; (5) selectively angularly orienting the probe light normal to the surface, based on the spatial orientation determined for the surface; and (6) directing the probe light onto the surface to detect a response to the ultrasonic waves.
    Type: Grant
    Filed: November 7, 2018
    Date of Patent: July 27, 2021
    Assignees: The Boeing Company, University of Washington
    Inventors: Jill P. Bingham, Gary E. Georgeson, William P. Motzer, Alan F. Stewart, Matthew O'Donnell, Ivan Pelivanov
  • Patent number: 10996162
    Abstract: Described herein is an apparatus, for shielding light generated by a laser during non-destructive inspection of an object. The apparatus includes a light shield at least partially enveloping the laser and defining a first opening through which light generated by the laser passes from the laser to the object. The light shield is opaque and includes at least one first biasing mechanism. The apparatus also includes at least one first light seal coupled to the light shield about the first opening of the light shield. The at least one first biasing mechanism is configured to urge resilient deformation of the at least one first light seal against the object. When the at least one first light seal is resiliently deformed against the object, light generated by the laser is constrained within a light containment space defined between the light shield, the at least one first light seal, and the object.
    Type: Grant
    Filed: October 30, 2018
    Date of Patent: May 4, 2021
    Assignee: The Boeing Company
    Inventors: Gary E. Georgeson, William P. Motzer, Jeffry J. Garvey, Scott W. Lea, James C. Kennedy, Steven K. Brady, Alan F. Stewart, Jill P. Bingham
  • Publication number: 20200225195
    Abstract: Apparatuses, systems, and methods are presented for calibrating an inspection system, particularly a Laser Bond Inspection (LBI) system that identifies a strength of a test structure. The disclosed calibration system comprises a calibration panel, a surface motion sensor, and a processing circuit. The surface motion sensor senses a compression wave generated in the calibration panel responsive to a laser pulse applied by a LBI head to the calibration panel. The processing circuit outputs a calibration result for the laser inspection system responsive to one or more characteristics of the sensed compression wave. The calibration system provides significantly faster calibration results, and thus may be implemented more frequently to improve the accuracy and repeatability of the inspection system.
    Type: Application
    Filed: January 11, 2019
    Publication date: July 16, 2020
    Inventors: Alan F. Stewart, Marc Joel Piehl
  • Publication number: 20200141908
    Abstract: A method for testing a structure using laser ultrasound includes steps of: (1) directing positioning light on a surface of the structure; (2) determining a spatial location and a spatial orientation of the surface from an evaluation of the positioning light reflected back from the surface; (3) directing pump light onto the surface to generate ultrasonic waves in the structure; (4) selectively locating a probe-light focal point of probe light on the surface, based on the spatial location determined for the surface; (5) selectively angularly orienting the probe light normal to the surface, based on the spatial orientation determined for the surface; and (6) directing the probe light onto the surface to detect a response to the ultrasonic waves.
    Type: Application
    Filed: November 7, 2018
    Publication date: May 7, 2020
    Applicants: The Boeing Company, University of Washington
    Inventors: Jill P. Bingham, Gary E. Georgeson, William P. Motzer, Alan F. Stewart, Matthew O'Donnell, Ivan Pelivanov
  • Patent number: 10641742
    Abstract: A nondestructive bond strength testing method, including: coupling an expendable device to a structure under test, the expendable device including a patterned planar array of exploding bridge wires; simultaneously vaporizing the patterned planar array of exploding bridge wires by applying a pulse of electrical energy to the patterned planar array of exploding bridge wires; and sensing an initial disbonding signature of the structure under test.
    Type: Grant
    Filed: December 4, 2017
    Date of Patent: May 5, 2020
    Assignee: The Boeing Company
    Inventors: Mark J. Clemen, Jr., Alan F. Stewart, Dejan Nikic
  • Patent number: 10571390
    Abstract: A method of detecting local material changes in a composite structure is presented. A pulsed laser beam is directed towards the composite structure comprised of a number of composite materials. Wide-band ultrasonic signals are formed in the composite structure when radiation of the pulsed laser beam is absorbed by the composite structure. The wide-band ultrasonic signals are detected to form data. The data is processed to identify a local frequency value for the composite structure. The local frequency value is used to determine if local material changes are present in the number of composite materials.
    Type: Grant
    Filed: March 15, 2016
    Date of Patent: February 25, 2020
    Assignee: The Boeing Company
    Inventors: William P. Motzer, Gary Ernest Georgeson, Jill Paisley Bingham, Steven Kenneth Brady, Alan F. Stewart, James C. Kennedy, Ivan Pelivanov, Matthew O'Donnell, Jeffrey Reyner Kollgaard
  • Publication number: 20190383727
    Abstract: Apparatus and methods for laser bond inspection (LBI) of internal bonds in a composite structure with limited access. The technology solves the problem of access for an LBI process head through selection of optics, an articulated optical path and simplification of the method of collecting debris. A small-format process head is specifically designed for laser bond inspection in limited-access spaces. This process head allows access to locations within ½ inch of a nearby wall or structure and utilizes a laser beam that is much smaller (˜2-3 mm) in diameter. The apparatus incorporates articulated joints to improve access to locations in the structure being inspected. The process head may also be configured to protect the optical elements (e.g., the focusing lens) from blow-back of debris from the LBI inspection process.
    Type: Application
    Filed: June 14, 2018
    Publication date: December 19, 2019
    Applicant: The Boeing Company
    Inventors: Alan F. Stewart, Marc J. Piehl
  • Patent number: 10345267
    Abstract: A method of detecting material changes in a composite structure is presented. A pulsed laser beam is directed towards the composite structure comprised of a number of composite materials. Wide-band ultrasonic signals are formed in the composite structure when radiation of the pulsed laser beam is absorbed by the composite structure. The wide-band ultrasonic signals are detected to form data. The data comprises a number of ultrasonic A-scans. The data is processed to identify a plurality of frequency measurements for each of the number of ultrasonic A-scans. A frequency image is displayed using the plurality of frequency measurements. The material changes are represented in the frequency image.
    Type: Grant
    Filed: March 15, 2016
    Date of Patent: July 9, 2019
    Assignee: The Boeing Company
    Inventors: Matthew O'Donnell, Ivan Pelivanov, Steven Kenneth Brady, Gary Ernest Georgeson, Jeffrey Reyner Kollgaard, William P. Motzer, Clarence Lavere Gordon, III, Jill Paisley Bingham, Alan F. Stewart, James C. Kennedy
  • Publication number: 20190202002
    Abstract: Described herein is a system for processing a workpiece that includes a plurality of lasers that each produces a laser beam pulse. The system also includes a laser control module that sequences temporal characteristics of the laser beam pulses. Additionally, the system includes a laser beam compensation module that shapes a near field intensity profile of at least one of the laser beam pulses and adjusts a path length of at least one of the laser beam pulses. The system also includes at least one laser beam position element that combines the laser beam pulses to produce a combined laser beam pulse at a surface of the workpiece.
    Type: Application
    Filed: March 6, 2019
    Publication date: July 4, 2019
    Inventors: Alan F. Stewart, Anthony J. Kay, Louis K. Zeldin, Andrea Koumvakalis
  • Publication number: 20190170700
    Abstract: A nondestructive bond strength testing method, including: coupling an expendable device to a structure under test, the expendable device including a patterned planar array of exploding bridge wires; simultaneously vaporizing the patterned planar array of exploding bridge wires by applying a pulse of electrical energy to the patterned planar array of exploding bridge wires; and sensing an initial disbonding signature of the structure under test.
    Type: Application
    Filed: December 4, 2017
    Publication date: June 6, 2019
    Applicant: The Boeing Company
    Inventors: Mark J. Clemen, JR., Alan F. Stewart, Dejan Nikic
  • Patent number: 10309893
    Abstract: A method of detecting inconsistencies in a composite structure is presented. A pulsed laser beam is directed towards the composite structure comprised of a number of composite materials. Wide-band ultrasonic signals are formed in the composite structure when radiation of the pulsed laser beam is absorbed by a surface of the composite structure. The wide-band ultrasonic signals are detected over a duration of time to form data. The data comprises an ultrasonic A-scan spectrum. The data is processed to identify a structure signal in a frequency domain of the ultrasonic A-scan spectrum. The structure signal of the ultrasonic A-scan spectrum is compared to a structure signal of a composite structure standard to determine whether the inconsistencies are present in the number of composite materials.
    Type: Grant
    Filed: March 15, 2016
    Date of Patent: June 4, 2019
    Assignee: The Boeing Company
    Inventors: Gary Ernest Georgeson, William P. Motzer, Jill Paisley Bingham, Alan F. Stewart, Steven Kenneth Brady, James C. Kennedy
  • Patent number: 10239155
    Abstract: Described herein is a system for processing a workpiece that includes a plurality of lasers that each produces a laser beam pulse. The system also includes a laser control module that sequences temporal characteristics of the laser beam pulses. Additionally, the system includes a laser beam compensation module that shapes a near field intensity profile of at least one of the laser beam pulses and adjusts a path length of at least one of the laser beam pulses. The system also includes at least one laser beam position element that combines the laser beam pulses to produce a combined laser beam pulse at a surface of the workpiece.
    Type: Grant
    Filed: April 30, 2014
    Date of Patent: March 26, 2019
    Assignee: The Boeing Company
    Inventors: Alan F. Stewart, Anthony J. Kay, Louis K. Zeldin, Andrea Koumvakalis
  • Publication number: 20190064058
    Abstract: Described herein is an apparatus, for shielding light generated by a laser during non-destructive inspection of an object. The apparatus includes a light shield at least partially enveloping the laser and defining a first opening through which light generated by the laser passes from the laser to the object. The light shield is opaque and includes at least one first biasing mechanism. The apparatus also includes at least one first light seal coupled to the light shield about the first opening of the light shield. The at least one first biasing mechanism is configured to urge resilient deformation of the at least one first light seal against the object. When the at least one first light seal is resiliently deformed against the object, light generated by the laser is constrained within a light containment space defined between the light shield, the at least one first light seal, and the object.
    Type: Application
    Filed: October 30, 2018
    Publication date: February 28, 2019
    Inventors: Gary E. Georgeson, William P. Motzer, Jeffry J. Garvey, Scott W. Lea, James C. Kennedy, Steven K. Brady, Alan F. Stewart, Jill P. Bingham
  • Patent number: 10126273
    Abstract: A method of detecting inconsistencies in a structure is presented. A pulsed laser beam is directed towards the structure. A plurality of types of ultrasonic signals is formed in the structure when radiation of the pulsed laser beam is absorbed by the structure. The plurality of types of ultrasonic signals is detected to form data.
    Type: Grant
    Filed: February 29, 2016
    Date of Patent: November 13, 2018
    Assignee: The Boeing Company
    Inventors: Ivan Pelivanov, William P. Motzer, Matthew O'Donnell, Steven Kenneth Brady, Gary Ernest Georgeson, Jeffrey Reyner Kollgaard, Clarence Lavere Gordon, III, Jill Paisley Bingham, Alan F. Stewart, James C. Kennedy
  • Patent number: 10113951
    Abstract: Described herein is an apparatus, for shielding light generated by a laser during non-destructive inspection of an object. The apparatus includes a light shield at least partially enveloping the laser and defining a first opening through which light generated by the laser passes from the laser to the object. The light shield is opaque and includes at least one first biasing mechanism. The apparatus also includes at least one first light seal coupled to the light shield about the first opening of the light shield. The at least one first biasing mechanism is configured to urge resilient deformation of the at least one first light seal against the object. When the at least one first light seal is resiliently deformed against the object, light generated by the laser is constrained within a light containment space defined between the light shield, the at least one first light seal, and the object.
    Type: Grant
    Filed: April 22, 2016
    Date of Patent: October 30, 2018
    Assignee: The Boeing Company
    Inventors: Gary E. Georgeson, William P. Motzer, Jeffry J. Garvey, Scott W. Lea, James C. Kennedy, Steven K. Brady, Alan F. Stewart, Jill P. Bingham
  • Patent number: 10057971
    Abstract: The present disclosure relates to the active initiation of incident energy-dissipating material from a structure surface coating as a counter measure response for the protection of a structure surface. The active initiation is triggered at a predetermined area or areas on a targeted structure surface in response to incident directed energy sensed on a target surface.
    Type: Grant
    Filed: October 17, 2017
    Date of Patent: August 21, 2018
    Assignee: THE BOEING COMPANY
    Inventors: Mark J Clemen, Jr., Alan F Stewart, John R Hull, Keith J Davis
  • Patent number: 10048230
    Abstract: A method for determining the presence of damage in a structure includes applying energy to the structure to induce tension shockwaves in the structure. The method also includes detecting sound waves caused by the tension shockwaves using at least one acoustic emission sensor on the surface of the structure. Additionally, the method includes determining the presence of damage in the structure due to the applied energy based on detected sound waves.
    Type: Grant
    Filed: November 14, 2013
    Date of Patent: August 14, 2018
    Assignee: The Boeing Company
    Inventors: Alan F. Stewart, Hong H. Tat, Richard H. Bossi