Patents by Inventor Alan G. Jacobs

Alan G. Jacobs has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220254639
    Abstract: A method for activating implanted dopants and repairing damage to dopant-implanted GaN to form n-type or p-type GaN. A GaN substrate is implanted with n- or p-type ions and is subjected to a high-temperature anneal to activate the implanted dopants and to produce planar n- or p-type doped areas within the GaN having an activated dopant concentration of about 1018-1022 cm?3. An initial annealing at a temperature at which the GaN is stable at a predetermined process temperature for a predetermined time can be conducted before the high-temperature anneal. A thermally stable cap can be applied to the GaN substrate to suppress nitrogen evolution from the GaN surface during the high-temperature annealing step. The high-temperature annealing can be conducted under N2 pressure to increase the stability of the GaN. The annealing can be conducted using laser annealing or rapid thermal annealing (RTA).
    Type: Application
    Filed: January 26, 2022
    Publication date: August 11, 2022
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Travis J. Anderson, James C. Gallagher, Marko J. Tadjer, Alan G. Jacobs, Boris N. Feigelson
  • Publication number: 20220059352
    Abstract: A method for activating implanted dopants and repairing damage to dopant-implanted GaN to form n-type or p-type GaN. A GaN substrate is implanted with n- or p-type ions and is subjected to a high-temperature anneal to activate the implanted dopants and to produce planar n- or p-type doped areas within the GaN having an activated dopant concentration of about 1018-1022 cm?3. An initial annealing at a temperature at which the GaN is stable at a predetermined process temperature for a predetermined time can be conducted before the high-temperature anneal. A thermally stable cap can be applied to the GaN substrate to suppress nitrogen evolution from the GaN surface during the high-temperature annealing step. The high-temperature annealing can be conducted under N2 pressure to increase the stability of the GaN. The annealing can be conducted using laser annealing or rapid thermal annealing (RTA).
    Type: Application
    Filed: November 8, 2021
    Publication date: February 24, 2022
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Travis J. Anderson, James C. Gallagher, Marko J. Tadjer, Alan G. Jacobs, Boris N. Feigelson
  • Publication number: 20220059353
    Abstract: A method for activating implanted dopants and repairing damage to dopant-implanted GaN to form n-type or p-type GaN. A GaN substrate is implanted with n- or p-type ions and is subjected to a high-temperature anneal to activate the implanted dopants and to produce planar n- or p-type doped areas within the GaN having an activated dopant concentration of about 1018-1022 cm?3. An initial annealing at a temperature at which the GaN is stable at a predetermined process temperature for a predetermined time can be conducted before the high-temperature anneal. A thermally stable cap can be applied to the GaN substrate to suppress nitrogen evolution from the GaN surface during the high-temperature annealing step. The high-temperature annealing can be conducted under N2 pressure to increase the stability of the GaN. The annealing can be conducted using laser annealing or rapid thermal annealing (RTA).
    Type: Application
    Filed: November 8, 2021
    Publication date: February 24, 2022
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Travis J. Anderson, James C. Gallagher, Marko J. Tadjer, Alan G. Jacobs, Boris N. Feigelson
  • Publication number: 20210400777
    Abstract: RF susceptors manufactured by means of 3D printing. 3D-printed susceptors in accordance with the invention include susceptors having solid or mesh walls, where the susceptors are in the form of hollow cylinders, pyramids, spheres, hemispheres, ellipsoids, paraboloids, toroids, or prisms; flat planes; or other hollow or solid three-dimensional shapes. The 3D-printed susceptors can be formed from any suitable starting material, such as tungsten powder, graphite, silicon carbide, molybdenum powder, tantalum powder, rhenium powder, or alloys thereof, or can be formed such that some portions of the susceptors are formed from one or more materials while other portions are formed from different material(s).
    Type: Application
    Filed: June 15, 2021
    Publication date: December 23, 2021
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Alan G. Jacobs, Boris N. Feigelson
  • Patent number: 11201058
    Abstract: A method for activating implanted dopants and repairing damage to dopant-implanted GaN to form n-type or p-type GaN. A GaN substrate is implanted with n- or p-type ions and is subjected to a high-temperature anneal to activate the implanted dopants and to produce planar n- or p-type doped areas within the GaN having an activated dopant concentration of about 1018-1022 cm?3. An initial annealing at a temperature at which the GaN is stable at a predetermined process temperature for a predetermined time can be conducted before the high-temperature anneal. A thermally stable cap can be applied to the GaN substrate to suppress nitrogen evolution from the GaN surface during the high-temperature annealing step. The high-temperature annealing can be conducted under N2 pressure to increase the stability of the GaN. The annealing can be conducted using laser annealing or rapid thermal annealing (RTA).
    Type: Grant
    Filed: July 13, 2020
    Date of Patent: December 14, 2021
    Assignee: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Travis J. Anderson, James C. Gallagher, Marko J. Tadjer, Alan G. Jacobs, Boris N. Feigelson
  • Publication number: 20210028020
    Abstract: A method for activating implanted dopants and repairing damage to dopant-implanted GaN to form n-type or p-type GaN. A GaN substrate is implanted with n- or p-type ions and is subjected to a high-temperature anneal to activate the implanted dopants and to produce planar n- or p-type doped areas within the GaN having an activated dopant concentration of about 1018-1022 cm?3. An initial annealing at a temperature at which the GaN is stable at a predetermined process temperature for a predetermined time can be conducted before the high-temperature anneal. A thermally stable cap can be applied to the GaN substrate to suppress nitrogen evolution from the GaN surface during the high-temperature annealing step. The high-temperature annealing can be conducted under N2 pressure to increase the stability of the GaN. The annealing can be conducted using laser annealing or rapid thermal annealing (RTA).
    Type: Application
    Filed: July 13, 2020
    Publication date: January 28, 2021
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Travis J. Anderson, James C. Gallagher, Marko J. Tadjer, Alan G. Jacobs, Boris N. Feigelson
  • Patent number: 10854457
    Abstract: An enhanced symmetric multicycle rapid thermal annealing process for removing defects and activating implanted dopant impurities in a III-nitride semiconductor sample. A sample is placed in an enclosure and heated to a temperature T1 under an applied pressure P1 for a time t1. While the heating of the sample is maintained, the sample is subjected to a series of rapid laser irradiations under an applied pressure P2 and a baseline temperature T2. Each of the laser irradiations heats the sample to a temperature Tmax above its thermodynamic stability limit. After a predetermined number of temperature pulses or a predetermined period of time, the laser irradiations are stopped and the sample is brought to a temperature T3 and held at T3 for a time t3 to complete the annealing.
    Type: Grant
    Filed: April 30, 2019
    Date of Patent: December 1, 2020
    Assignee: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Boris N. Feigelson, Francis J. Kub, Alan G. Jacobs
  • Publication number: 20190341261
    Abstract: An enhanced symmetric multicycle rapid thermal annealing process for removing defects and activating implanted dopant impurities in a III-nitride semiconductor sample. A sample is placed in an enclosure and heated to a temperature T1 under an applied pressure P1 for a time t1. While the heating of the sample is maintained, the sample is subjected to a series of rapid laser irradiations under an applied pressure P2 and a baseline temperature T2. Each of the laser irradiations heats the sample to a temperature Tmax above its thermodynamic stability limit. After a predetermined number of temperature pulses or a predetermined period of time, the laser irradiations are stopped and the sample is brought to a temperature T3 and held at T3 for a time t3 to complete the annealing.
    Type: Application
    Filed: April 30, 2019
    Publication date: November 7, 2019
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Boris N. Feigelson, Francis J. Kub, Alan G. Jacobs